期刊文献+

锂离子电池硅负极循环稳定性研究进展 被引量:5

Research Progress in Cycle Stability of Silicon Based Li-Ion Battery Anodes
下载PDF
导出
摘要 硅是已知质量比容量最高的锂离子电池负极材料,研究人员希望通过制造可靠的高容量硅负极,生产高能量密度的锂离子电池.但由于充放电过程中锂在硅材料中嵌入与释放,硅材料发生巨大的体积变化,以致破碎,并从负极上脱落下来.硅负极容量随着充放循环次数的增加而迅速下降,是其应用进程中受到的最大制约.本文结合锂离子电池硅负极研究现状,从硅材料本体结构、整体负极结构两方面介绍几种不同的提高硅负极循环稳定性的方法,并对各种方法的稳定性、成本、制备方法等进行比较,提出对未来硅负极材料研究的展望. Silicon(Si), with the highest specific capacity currently known, is a promising anode material for Li-ion battery. However, in the charging and discharging process, with Li atoms inserting into and breaking out of the Si crystal lattices, the Si anode undergoes enormous volume expansion and contraction, ending in pulverization. The fact that the specific capacity of bulk Si anodes drop quickly is a challenging problem. In this review, we summarize recent progresses in Si anode. We concern about the nanostructure of silicon, cooperation of silicon with other additives and macrostructure design of anodes. We discuss strengths and shortcomings of different methods, considering both electrochemical performance and mass production feasibility.
作者 郭择良 伍晖
出处 《电化学》 CAS CSCD 北大核心 2016年第5期499-512,共14页 Journal of Electrochemistry
基金 国家科技部973计划(No.2015CB932500 No.2013CB632702) 国家自然科学基金项目(No.51302141)资助
关键词 锂离子电池 硅负极材料 纳米结构 循环寿命 固态电解质层 lithium-ion battery silicon anode nanostructure cycle life solid electrolyte interface
  • 相关文献

参考文献61

  • 1Armand M, Tarascon J M. Building better batteries[J]. Na- ture, 2008, 451(7179): 652-657.
  • 2Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
  • 3Winter M, Besenhard J O, Spahr M E, et al. Insertion elec- trode materials for rechargeable lithium batteries [J]. Ad- vanced materials, 1998, 10(10): 725-763.
  • 4Besenhard J O, Yang J, Winter M. Will advanced lithi- um-alloy anodes have a chance in lithium-ion batteries[J]. Journal of Power Sources, 1997, 68(1): 87-90.
  • 5Boukamp B A, Lesh G C, Huggins R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of the Electrochemical Society, 1981, 128(4): 725-729.
  • 6Arico A S, Bruce P, Scrosati B, et al. Nanostructured ma- terials for advanced energy conversion and storage devices [J]. Nature materials, 2005, 4(5): 366-377.
  • 7Szczech J R, Jin S. Nanostructured silicon for high capaci- ty lithium battery anodes[J]. Energy & Environmental Sci- ence, 2011, 4(1): 56-72.
  • 8Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
  • 9Wu H, Zheng G, Liu N, et al. Engineering empty space be- tween Si nanoparticles for lithium-ion battery anodes [J]. Nano letters, 2012, 12(2): 904-909.
  • 10Wu H, Chan G, Choi J W, et al. Stable cycling of dou- ble-walled silicon nanotube battery anodes through sol- id-electrolyte interphase control[J]. Nature nanotechnolo- gy, 2012, 7(5): 310-315.

同被引文献24

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部