期刊文献+

模板法合成NiO@Co_3O_4空心多孔小球及其储电性能的研究(英文)

Template-Assisted Hydrothermal Synthesis of NiO@Co_3O_4 Hollow Spheres with Hierarchical Porous Surfaces for Supercapacitor Applications
下载PDF
导出
摘要 空心结构在能量转化和储存等重要应用方面,展现出了巨大的潜力.为了进一步提高性能,根据物质的组成和结构,合理设计出更复杂的空心结构材料是非常必要的,但目前仍然存在相当大的挑战.本文报导了一种以硅小球作为模板的高效方法,合成了新型的NiO@Co_3O_4空心多孔小球,其比表面积可达219.68 m2·g-1.NiO@Co_3O_4空心多孔小球的高比表面积有利于增强离子的扩散和提高活性物质的利用效率,并可防止纳米颗粒团聚.测试结果表明,在5 m V·s-1的扫描速度下,所制备的NiO@Co_3O_4空心多孔小球的比电容值达1140.9 F·g-1,同时具有良好的循环稳定性,显示出该材料在超级电容器领域有较好的应用前景. Hollow structures have shown great potentials in a variety of important applications, such as energy conversion and storage. In order to further enhance the performance, the rational design of hollow structures with higher complexity in terms of composition and structure is highly desirable and still remains a great challenge. In this work, an efficient strategy was established for the fabrication of novel Ni O@Co_3O_4hollow spheres(HSs) with hierarchical porous surfaces by silica spheres template-assisted hydrothermal synthesis. The as-fabricated Ni O@Co_3O_4HSs showed high specific surface area of 219.68 m2·g^(-1), and significant enhancement in ion diffusion and utilization rate, as well as effective prevention in nanoparticle agglomeration. When used as electrodes, the Ni O@Co_3O_4HSs exhibited a large specific capacitance of 1140.9 F·g^(-1)at the scan rate of 5 m V·s^(-1)and excellent cycling stability, suggesting a promising application for supercapacitors.
出处 《电化学》 CAS CSCD 北大核心 2016年第5期513-520,共8页 Journal of Electrochemistry
基金 supported by National Natural Science Foundation of China(No.51173212) National Basic Research Program of China(No.2015CB932304) Natural Science Foundation of Guangdong Province(No.S2013020012833) Project of High Level Talents in Higher School of Guangdong Province Science and Technology Planning Project of Guangdong Province(No.2013B010403011)
关键词 空心多孔小球 一氧化镍/四氧化三钴 硅小球模板 高比表面积 超级电容器 hollow sphere NiO/Co3O4 silica template hydrothermal synthesis supercapacitor
  • 相关文献

参考文献32

  • 1Chen Z, Augustyn V, Wen J, et aL High-performance su- percapacitors based on intertwined CNT/V2Os nanowire nanocomposites[J]. Advanced Materials, 2011, 23(6): 791- 795.
  • 2Bao L, Zang J, Li X. Flexible Zn2SnOdMnO core/shell nanocable-carbon microfiber hybrid composites for high- performance supercapacitor electrodes[J]. Nano Letters, 2011, 11(3): 1215-1220.
  • 3Aricb A S, Bruce P, Scrosati B, et al. Nanostructured mate- rials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366-377.
  • 4Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices [J]. Advanced Materials, 2008, 20: 2878-2887.
  • 5Peng C, Zhang S W, Zhou X H, et al. Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors[J]. Energy & Environmental Science, 2010, 3(10): 1499-1502.
  • 6Zhang L L, Zhao X S. Carbon-based materials as superca- pacitor electrodes[J]. Chemical Society Reviews, 2009, 38 (9): 2520-2531.
  • 7Peng X, Peng L, Wu C, et al. Two dimensional nanomate- rials for flexible supercapacitors[J]. Chemical Society Re- views, 2014, 43(10): 3303-3323.
  • 8Rakhi R B, Chen W, Cha D, et al. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance[J]. Nano Letters, 2012, 12(5): 2559-2567.
  • 9Cheng Y, Lu S, Zhang H, et al. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors [J]. Nano Letters, 2012, 12(8): 4206-4211.
  • 10Maruyama H, Nakano H, Nakamoto M, et al. High-power electrochemical energy storage system employing stable radical pseudocapacitors [J]. Angewandte Chemic Inter- national Edition, 2014, 126(5): 1348-1352.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部