期刊文献+

不同锂盐对超支化/梳状复合型聚合物电解质的性能影响研究 被引量:2

Effects of Lithium Salts on Properties of Hyperbrandched/Comb-Like Composite Polymer Electrolytes
下载PDF
导出
摘要 利用PVA侧链上的羟基的化学活性,采用超支化聚胺-酯对改性纳米SiO_2和PVA接枝改性,并加入不同锂盐,制备了SiO_2-g-HBPAE/PVA-g-HBPAE超支化/梳状复合型聚合物电解质,利用SEM观察了纳米粒子在基体中的分散情况,采用DSC、拉伸实验以及介电谱研究了锂盐种类及添加量对复合体系性能的影响.结果表明,超支化接枝改善了SiO_2和基体的界面相容性;磺酸类锂盐在复合材料中表现出自增塑现象,材料的玻璃化转变温度(Tg)大幅度下降;LiClO_4在基体中的离解能力强于Li CF_3SO_3和Li N(SO_3CF_3)_2;当Li CF3SO3添加量为20%(by mass,下文同)时,聚合物电解质的室温电导率达到最大值2.58×10-6S·cm-1. Based on the chemical characteristics of the hydroxyl group of PVA side-chain, the hyperbrandched poly(amine-ester)(HBPAE) was used to hypergraftingly pretreated nano-silica(SiO_2) and polyving akohol(PVA). And different lithium salts were added to fabricate the SiO_2-g-HBPAE/PVA-g-HBPAE hyperbrandched/comb-like composite polymer electrolytes(CPEs). The dis persion of nanoparticles in matrix was observed by SEM. The effects of different lithium salts on the properties of CPEs were studied by DSC, tensile test and dielectric spectra. The results showed that the hypergrafting method improved the interphase compatibility between SiO_2 and matrix. Sulfonic acid type lithium salts accelerated self-plasticizing with the Tgvalues being decreased. The LiClO_4 manifested stronger solubility than Li CF3SO3 and Li N(SO3CF3)2in the polymer matrices. The ionic conductivity of the polymer electrolytes reached the maximum value of 2.58 × 10-6S·cm-1after the addition of 20% Li CF3SO3 at room temperature.
出处 《电化学》 CAS CSCD 北大核心 2016年第5期535-541,共7页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.51473186) 广州市科技计划项目(No.201508010052)资助
关键词 聚合物电解质 聚乙烯醇 超支化聚胺-酯 梳状大分子 锂盐 polymer electrolytes polyving akohol hyperbrandched poly(amine-ester) comb-like polymer lithium salts
  • 相关文献

参考文献25

  • 1Kim Y H. Hyperbranchecs polymers 10 years after[J]. Joumal of Polymer Science Part A: Polymer Chemistry, 1998, 36(11): 1685-1698.
  • 2Nishimoto A, Agehara K, Furuya N, et al. High ionic con- ductivity of polyether-based network polymer electrolytes with hyperbranched side chains[J]. Macromolecules, 1999, 32(5): 1541-1548.
  • 3Itoh T, Ichikawa Y, Hiram N, et al. Effect of branching in base polymer on ionic conductivity in hyperbranched polymer electrolytes[J]. Solid State Ionics, 2002, 150(3): 337-345.
  • 4Itoh T, Ichikawa Y, Uno T, et al. Composite polymer elec- trolytes based on poly(ethylene oxide), hyperbranched pol- ymer, BaTiO3 and LiN(CF3SO2)2[J]. Solid State Ionics, 2003, 156(3): 393-399.
  • 5Weimer M W, Frechet J M J, Gitsov I. Importance of ac- tive-site reactivity and reaction conditions in the prepara- tion of hyperbranched polymers by self-condensing vinyl polymerization: Highly branched vs. linear poly 4-(chloro- methyl)styrene by metal-catalyzed "living" radical poly- merization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36(6): 955-970.
  • 6Lach C, Hanselmann R, Frey H, et al. Hyperbranched car- bosilane oxazoline-macromonomers: Polymerization and coupling to a trimesic acid core[J]. Macromolecular Rapid Communications, 1998, 19(9): 461-465.
  • 7Kuo P L, Ghosh S K, Liang W J, et al. Hyperbranched polyethyleneimine architecture onto poly(allylamine) by simple synthetic approach and the chelating characters [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39(17): 3018-3023.
  • 8Qi L, Lin Y Q, Wang F S. Study on a comb-like polymer electrolyte based on the backbone of ethylene-maleic an- hydride copolymer[J]. Solid State Ionics, 1998, 109(1/2): 145-150.
  • 9Dailey L A, Wittmar M, Kissel T. The role of branched polyesters and their modifications in the development of modem drug delivery vehicles [J]. Journal of Controlled Release, 2005, 101(1/3): 137-149.
  • 10Hu X L, Hou G M, Zhang M Q, et al. A new nanocom- posite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica[J]. Journal of Ma- terials Chemistry, 2012, 22(36): 18961-18967.

二级参考文献33

  • 1J.S.Wang1,2) ,M.L.Zhou2) ,J.X.Zhang2) ,Z.R.Nie2) T.Y.Zuo2) and G.J.Zhang2) 1) State Key Laboratory of Materials Chemistry and Applications,Peking University ,Beijing 100871 ,China2) Schoolof Materials Science and Engineering ,Beijing Polytechnic Univers.ASTUDY OF VALENCE OF YTTRIUM IN Y_2O_3 Mo CATHODE[J].Acta Metallurgica Sinica(English Letters),1999,12(4):602-606. 被引量:16
  • 2Fenton D E, Parker J M, Wright P V.Polymer, 1973, 14:589-591.
  • 3Zheng Honghe(郑洪河).Lithium-ion Battery Electrolyte(锂离子电池电解质).Beijing(北京):Chemical Industry Press(化学工业出版社), 2007:148-149.
  • 4Zheng Jinyan(郑金燕), Zhang Yi(张益), Wang Yuechuan(王跃川).化工新型材料, 2007, 4(35): 49-51.
  • 5Mezianea R, Bonneta J P, Courtya M, Djellabb K, Arma M.Electrochimica Acta, 2011, 57:14-19.
  • 6Ji JY, Li B, Zhong W H.J Phys Chem B, 2010, 114:13637-13643.
  • 7Laurent J G, Khaldi A, Maziz A, Cedric P, Giao T M, Aubert P H, Vidal F, Chevrot C, Teyssie D.Macromolecules, 2011, 44:9683-9691.
  • 8Suait M S, Ahmad A, Rahman M Y.Ionics, 2009, 15:497-500.
  • 9Lee J Y, Lee Y M, Bhaskar B, Nho Y C, Park J K.J Solid State Electrochem, 2010, 14:1445-1449.
  • 10Croce F, Appetecchi G B, Persi L, Scrosati B.Nature, 1998, 394(30):456-458.

共引文献26

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部