期刊文献+

热处理气氛中氧含量对YBCO薄膜性能的影响(英文) 被引量:1

Effect of Oxygen Content in Atmospheres of Heat Treatment on the Properties of YBCO Thin films
原文传递
导出
摘要 采用低氟溶胶-凝胶法在La Al O_3(100)基板上制备了YBa_2Cu_3O_(7-x)(YBCO)薄膜,研究了在725℃热处理过程中,氧含量对最终所得YBCO薄膜临界电流密度J c的影响。研究发现,热处理过程中氧气含量在100~1700μL/L范围变化时,所获得的YBCO薄膜均具有良好的双轴织构特征。然而,当氧气含量为100或200μL/L时,由于YBCO薄膜致密性差,不能获得高J c的YBCO薄膜。随着氧气含量的增大,YBCO薄膜表面逐渐变得致密。当氧气含量增加到300μL/L时,YBCO薄膜表面较致密,J c达到4.3 MA/cm^2。继续增大氧含量至800和1700μL/L,薄膜表面逐渐出现富铜第二相颗粒,成为其J c较低的主要原因。 YBa2Cu307-x (YBCO) films were prepared on single-crystal LaA103 (100) substrate using a low-fluorine sol-gel method. The effect of the oxygen content in the atmospheres of heat treatment at 725 ℃on the critical current density (Jc) of the obtained YBCO films was investigated. Results show that all the films heat-treated in the oxygen content range of 100-1700 μL/L exhibit good biaxial-texture characteristics. However, high-Jc YBCO films are not obtained at the oxygen contents of 100 and 200 μL/L due to the lower density of the surfaces. With increasing the oxygen content, the film surface becomes dense gradually. When the oxygen content is 300 μL/L, the surface of the film is very dense and Jc reaches 4.3 MA/cm^2. Furthermore, many copper-rich second phases grow up on the surfaces with further increasing oxygen content up to 800 and 1700 μL/L, which is a dominant reason for the decline in J0 of the films.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第10期2534-2538,共5页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51372198) Doctorial Innovation Foundation of Xi’an University of Technology(310-11202j403)
关键词 超导薄膜 溶胶-凝胶 低温热处理 织构 氧含量 superconducting film sol-gel low-temperature heat treatment texture oxygen content
  • 相关文献

参考文献15

  • 1Araki T,Yamagiwa K, Hirabayashi I et al. Superconductor Science & Technology[J], 2001,14: L21.
  • 2Nakaoka K, Yoshizumi M, Usui Y et al. IEEE Transactions on Applied Superconductivity[J], 2013, 23(3): 6 600 404.
  • 3Hunt B D,Forrester M G, Talvacchio J et al. Applied Physics Letters[J].1996,68(26): 3805.
  • 4Obradors X,Puig T. Superconductor Science & Technology[J], 2014,27: 044 003.
  • 5Paranthaman M P, Qiu X, List ¥ A et al. IEEE Transactions on Applied Superconductivity[J]. 2011,21(3): 3059.
  • 6Obradors X,Puig T, Pomar A et al. Superconductor Science & Technology[J], 2004,17: 1055.
  • 7Zhao G Y, Chen Y Q, Lei L et al. IEEE Transactions on AppliedSuperconductivity[J], 2007,17(1): 40.
  • 8Araki T, Takahashi Y, Yamagiwa K et al. Physica C[J], 2001, 357-360:991.
  • 9Araki T, Takahashi Y, Yamagiwa K et al, IEEE Transactions on Applied Superconductivity[J] 2001, 11(1): 2869.
  • 10Hammond R H,Bormann R. Physica C[J], 1989,162-164: 703.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部