期刊文献+

The Intersection Numbers of Nearly Kirkman Triple Systems 被引量:1

The Intersection Numbers of Nearly Kirkman Triple Systems
原文传递
导出
摘要 In this paper, we investigate the intersection numbers of nearly Kirkman triple systems.JN[V] is the set of all integers k such that there is a pair of NKTS(v)s with a common uncovered collection of 2-subset intersecting in k triples. It has been established that JN[v] = {0, 1,. v(v-2)/6-6,v(v-2)/6-4,v(v-2)/6} for any integers v = 0 (mod 6) and v ≥ 66. For v ≤ 60, there are 8 cases leftundecided. In this paper, we investigate the intersection numbers of nearly Kirkman triple systems.JN[V] is the set of all integers k such that there is a pair of NKTS(v)s with a common uncovered collection of 2-subset intersecting in k triples. It has been established that JN[v] = {0, 1,. v(v-2)/6-6,v(v-2)/6-4,v(v-2)/6} for any integers v = 0 (mod 6) and v ≥ 66. For v ≤ 60, there are 8 cases leftundecided.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第12期1430-1450,共21页 数学学报(英文版)
基金 Supported by the Fundamental Research Funds for the Central Universities(Grant No.2014JBM121) National Natural Science Foundation of China(Grant Nos.11271042,11471032 and 11571034)
关键词 Nearly kirkman triple system parallel class FRAME intersection number Nearly kirkman triple system, parallel class, frame, intersection number
  • 相关文献

参考文献18

  • 1Baker, R., Wilson, R.: Nearly Kirkman triple systems. Utilitas Math., 11, 289-296 (1977).
  • 2Brouwer, A.: Two new nearly Kirkman triple systems. Utilitas Math., 13, 311-314 (1978).
  • 3Brouwer, A.: Optimal packings of K4's into a Kn. J. Combin. Theory Ser. A, 26, 278-297 (1979).
  • 4Chang, Y., Faro, G.: Intersection numbers of Kirkman triple systems. J. Combin. Theory Ser. A, 86, 348-361 (1999).
  • 5Chang, Y., Faro, G.: The flower intersection problem for Kirkman triple systems. J. Statist. Plann. Infer- ence, 110, 159-177 (2003).
  • 6Colbourn, C., Dinitz, J.: The CRC Handbook of Combinatorial Designs (Second Edition), CRC Press, Boca Raton, 163-165 (2006).
  • 7Colbourn, C., Kaski, P., Ostergard, P., et al.: Nearly Kirkman triple systems of order 18 and Hanani triple systems of order 19. Discrete Math., 311, 827-834 (2011).
  • 8Deng, D., Rees, R., Shen, H.: On the existence of nearly Kirkman triple systems with subsystems. Des. Codes Cryptogr., 48, 17-33 (2008).
  • 9Faro, G.: Kirkman triple systems having a prescribed number of triples in common. Ars Combin., 24, 9-21 (1987).
  • 10Ge, G., Rees, R.: On group-divisible designs with block size four and group-type 6urn1. Discrete Math., 279, 247-265 (2004).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部