期刊文献+

On Lawson's Area-minimizing Hypercones

On Lawson's Area-minimizing Hypercones
原文传递
导出
摘要 We show the area-minimality property of all homogeneous area-minimizing hypercones in Euclidean spaces (classified by Lawlor) following Lawson's original idea in his 72' Trans. A.M.S. paper "The equivariant Plateau problem and interior regularity". Moreover, each of them enjoys (coflat) calibrations singular only at the origin. We show the area-minimality property of all homogeneous area-minimizing hypercones in Euclidean spaces (classified by Lawlor) following Lawson's original idea in his 72' Trans. A.M.S. paper "The equivariant Plateau problem and interior regularity". Moreover, each of them enjoys (coflat) calibrations singular only at the origin.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第12期1465-1476,共12页 数学学报(英文版)
基金 Partially supported by the Fundamental Research Funds for the Central Universities,the SRF for ROCS,SEM,NSFC(Grant Nos.11526048,11601071) the NSF(Grant No.0932078 000) while the author was in residence at the MSRI during the 2013 Fall
关键词 Area-minimizing hypercone coflat calibration comass Area-minimizing hypercone, coflat calibration, comass
  • 相关文献

参考文献17

  • 1Bombieri, E., De Giorgi, E., Giusti, E.: Minimal cones and the Bernstein problem. Invent. Math., 7, 243-268 (1969).
  • 2Cheng, B. N.: Area-minimizing cone-type surfaces and coflat calibrations. Indiana Univ. Math. J. 37, 505-535 (1988).
  • 3Federer, H., Fleming, W. H.: Normal and integral currents. Ann. Math., 72, 458-520 (1960).
  • 4Hardt, R., Simon, L.: Area minimizing hypersurfaces with isolated singularities. J. Reine. Angew. Math., 362, 102-129 (1985).
  • 5Harvey, F. R., Lawson, Jr., H. B.: Calibrated geometries. Acta Math., 148, 47-157 (1982).
  • 6Hsiang, W.-Y., Lawson, Jr., H. B.: Minimal submanifolds of low cohomogeneneity. J. Diff. Geom., 5, 1-38 (1971).
  • 7Lawlor, G. R.: A Sufficient Criterion for a Cone to be Area-Minimizing. Mem. of the Amer. Math. Soc., 91, No. 446, 111 pp., American Mathematical Society, Providence, Rhode Island, 1991.
  • 8Lawson, Jr., H. B.: The equivariant Plateau problem and interior regularity. Trans. Amer. Math. Soc., 173, 231-249 (1972).
  • 9Lin, F.-H.: Minimality and stability of minimal hypersurfazes in AN. Bull. Austral. Math. Soc., 36, 209-214 (1987).
  • 10Ma, H., Ohnita, Y.: Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces. I. J. Diff. Geom., 97, 275-348 (2014).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部