期刊文献+

Super-Planckian thermal radiation enabled by hyperbolic surface phonon polaritons 被引量:1

Super-Planckian thermal radiation enabled by hyperbolic surface phonon polaritons
原文传递
导出
摘要 Excitation of surface resonance modes and presence of resonance-free hyperbolic modes are two common ways to enhance the near-field radiative energy transport, which can find wide applications in noncontact thermal management and energy harvesting.Here, we identify another way to achieve the super-Planckian thermal radiation via hyperbolic surface phonon polaritons(HSPhPs). Based on the fluctuation-dissipation theory, the near-field radiative heat flux between bulk hexagonal boron nitride(hBN) planes with the optical axis perpendicular to the radiative energy flow can be 120 times as large as the blackbody limit for a gap distance of 20 nm. When the film thickness is reduced to 10 nm, the radiative heat flux is found to increase by 26.3%.The underlying mechanism is attributed to the coupling of Type I HSPhPs inside the anisotropic hBN film, which improves the energy transmission coefficient over a broad wavevector space especially for waves with extremely high wavevectors. This work helps to deepen the understanding of near-field radiation between natural hyperbolic materials, and opens a new route to enhance the near-field thermal radiation.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第11期1680-1686,共7页 中国科学(技术科学英文版)
基金 the startup fund from Nanjing University of Aeronautics and Astronautics (Grant No. 90YAH16057)
关键词 near-field thermal radiation hyperbolic surface phonon polaritons hexagonal boron nitride 近地的热放射;夸张表面声子电磁声子;六角形的硼氮化物;
  • 相关文献

参考文献3

二级参考文献76

  • 1Modibo Kane TRAORE.Numerical investigation of thermal performance of heat loss of parabolic trough receiver[J].Science China(Technological Sciences),2010,53(2):444-452. 被引量:5
  • 2Snyder G J, Toberer E S. Complex thermoelectric materials. Nat Ma- ter, 2008, 7:105-114.
  • 3Weston E. Apparatus for utilizing solar radiant energy. US Patent, 389124A, 1888-9-4.
  • 4Weston E. Art of utilizing solar radiant energy. US Patent, 389125A, 1888-9-4.
  • 5Telkes M. Solar thermoelectric generators. J App| Phys, 1954, 25:13.
  • 6Kraemer D, Poudel B, Feng H P, et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat Mater, 2011, 10:532-538.
  • 7McEnaney K, Kraemer D, Ren Z, et al. Modeling of concentrating solar thermoelectric generators. J Appl Phys, 2011, 110:074502.
  • 8Sergeant N P, Pincon O, Agrawal M, et al. Design of wide-angle so-lar-selective absorbers using aperiodic metal-dielectric stacks. Opt Express, 2009, 17:22800-22812.
  • 9Chester D, Bermel P, Joannopoulos J D, et al. Design and global op- timization of high-efficiency solar thermal systems with tungsten cermets. Opt Express, 2011, 19:A245-A257.
  • 10Sakurai A, Tanikawa H, Yamada M. Computational design for a wide-angle cermet-based solar selective absorber for high temperature applications. J Quant Spectrosc Radiat Transfer, 2014, 132:80-89.

共引文献20

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部