期刊文献+

The effect of oxidation on physicochemical properties and aqueous stabilization of multiwalled carbon nanotubes:comparison of multiple analysis methods 被引量:2

The effect of oxidation on physicochemical properties and aqueous stabilization of multiwalled carbon nanotubes:comparison of multiple analysis methods
原文传递
导出
摘要 Surface oxidation can alter physicochemical properties of multiwalled carbon nanotubes(MWCNTs) and influence their aqueous stabilization.Many techniques have been used to characterize the physicochemical properties and aqueous stabilization of MWCNTs.However,the relationship between the change in physicochemical property and the aqueous stabilization of MWCNTs merits more studies,and the multiple characterization techniques have not been well compared.This study systematically and comparatively investigated the effect of oxidation on the physicochemical properties and aqueous stabilization of MWCNTs using multiple analysis methods.Increased surface area,disclosed tube ends,defects on the sidewalls,disruption of the electronic structure,and removal of metal catalysts and amorphous carbon were observed for the oxidized MWCNTs(o-MWCNTs) using the multipoint Brunauer-Emmett-Teller(BET) method,transmission electron microscope observation,Raman spectroscopy,UV-Vis spectroscopy,and thermogravimetric analysis.An oxidation-time-dependent increase in oxygen content of the MWCNTs was verified by the methods of elemental analysis,mass difference calculation,and X-ray photoelectron spectroscopy(XPS).Fourier transform infrared spectroscopy,XPS,and the Boehm titration were employed to study the functionalities on the MWCNT surfaces.Despite the limitations of these techniques,the results indicated that the dramatic increase in carboxyl groups was mainly responsible for the significant increase in oxygen content after the oxidation.The dissociation of the grafted functional groups increased electronegativity of the o-MWCNTs and facilitated the aqueous stabilization of o-MWCNTs through electrostatic repulsions.The oxidation affected the UV-Vis absorbance of MWCNT suspensions.The absorbances at 800 nm of the stabilized MWCNT suspensions had a good correlation with the MWCNT concentrations and could be used to quantify the MWCNT suspensions.The findings of this work are expected to boost the research on carbon nanotubes and their environmental behaviors. Surface oxidation can alter physicochemical properties of multiwalled carbon nanotubes(MWCNTs) and influence their aqueous stabilization.Many techniques have been used to characterize the physicochemical properties and aqueous stabilization of MWCNTs.However,the relationship between the change in physicochemical property and the aqueous stabilization of MWCNTs merits more studies,and the multiple characterization techniques have not been well compared.This study systematically and comparatively investigated the effect of oxidation on the physicochemical properties and aqueous stabilization of MWCNTs using multiple analysis methods.Increased surface area,disclosed tube ends,defects on the sidewalls,disruption of the electronic structure,and removal of metal catalysts and amorphous carbon were observed for the oxidized MWCNTs(o-MWCNTs) using the multipoint Brunauer-Emmett-Teller(BET) method,transmission electron microscope observation,Raman spectroscopy,UV-Vis spectroscopy,and thermogravimetric analysis.An oxidation-time-dependent increase in oxygen content of the MWCNTs was verified by the methods of elemental analysis,mass difference calculation,and X-ray photoelectron spectroscopy(XPS).Fourier transform infrared spectroscopy,XPS,and the Boehm titration were employed to study the functionalities on the MWCNT surfaces.Despite the limitations of these techniques,the results indicated that the dramatic increase in carboxyl groups was mainly responsible for the significant increase in oxygen content after the oxidation.The dissociation of the grafted functional groups increased electronegativity of the o-MWCNTs and facilitated the aqueous stabilization of o-MWCNTs through electrostatic repulsions.The oxidation affected the UV-Vis absorbance of MWCNT suspensions.The absorbances at 800 nm of the stabilized MWCNT suspensions had a good correlation with the MWCNT concentrations and could be used to quantify the MWCNT suspensions.The findings of this work are expected to boost the research on carbon nanotubes and their environmental behaviors.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第11期1498-1507,共10页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(21525728,21337004,21477107) the National Basic Research Program of China(2014CB441104) the Specialized Research Fund for the Doctoral Program of Higher Education (20130101110132)
关键词 nanomaterials 酸处理 描述技术 胶体的行为 carbon nanomaterials acid treatment characterization techniques colloidal behavior
  • 相关文献

参考文献1

二级参考文献1

共引文献4

同被引文献11

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部