期刊文献+

氧化去木质素玉米芯同步糖化发酵产2,3-丁二醇 被引量:2

Optimization of 2,3-butanediol production using simultaneous saccharification and fermentation from corncob after delignification by oxidant
下载PDF
导出
摘要 2,3-丁二醇是一种重要的平台化合物。选取经过碱性高锰酸钾(APP)预处理后的玉米芯为底物,采用阴沟肠杆菌Enterobacter cloacae CICC10011通过同步糖化发酵工艺(SSF)发酵产2,3-丁二醇。通过对SSF主要工艺参数进行优化,确定最适宜工艺条件为:底物浓度120 g/L,纤维素酶添加量40 FPU/g,木聚糖酶添加量12 000 U/g,发酵温度35℃,初始发酵p H 5.5,转速180 r/min。在最优发酵条件下,以APP预处理后的玉米芯为底物连续发酵36 h,2,3-丁二醇的浓度为21.5 g/L,转化率为0.27 g/g(以纤维素和半纤维素为参照);分别是未处理的玉米芯为底物时的8.41倍和8.71倍。 2,3-butanediol is an important potential platform chemical. In this work,corncob delignified by alkaline potassium permanganate pretreatment( APP) was used as the substrate to produce 2,3-butanediol by Enterobacter cloacae CICC10011 through simultaneous saccharification and fermentation( SSF) process. The optimal conditions for SSF were as follows: substrate concentration 120 g / L,cellulase loading 40 FPU / g,xylanase loading 12 000 U / g,initial p H 5. 5,temperature 35 ℃,and the rotate speed 180 r / min. After 36 h fermentation under the optimal SSF conditions,the yield of 2,3-butanediol was 21. 5 g / L and the conversion rate was 0. 27 g / g( based on cellulose and hemicellulose) with the APP-pretreated corncob as the substrate,which were 8. 41 and 8. 71 times of those with the un-pretreated corncob as the substrate respectively.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2016年第10期8-13,共6页 Food and Fermentation Industries
基金 天津科技大学青年教师创新基金资助(2014CXLG10) 工业发酵微生物教育部重点实验室暨天津市工业微生物重点实验室(天津科技大学)开放基金资助(2014IM101) 天津市自然科学基金重点项目(16JCZDJC31800)
关键词 玉米芯 去木质素 同步糖化发酵 2 3-丁二醇 工艺优化 corncob delignification simultaneous saccharification and fermentation 2 3-butanediol optimization
  • 相关文献

参考文献19

  • 1徐尤勇,高健,徐虹,曹灿,黄巍巍.Paenibacillus polymyxaZJ-9混合发酵菊粉和葡萄糖合成R,R-2,3-丁二醇[J].食品与发酵工业,2015,41(3):8-13. 被引量:2
  • 2JI XJ,HUANG H,OUYANG PK.Microbial 2,3-butanediol production:a state-of-the-art review[J].Biotechnology Advances,2011,29(3):351-364.
  • 3LYND LR,ZYL WH,MCBRIDE JE,et al.Consolidated bioprocessing of cellulosic biomass:an update[J].Current Opinion in Biotechnology,2005,16(5):577-583.
  • 4DONOHOE BS,RESCH MG.Mechanisms employed by cellulase systems to gain access through the complex architecture of lignocellulosic substrates[J].Current Opinionin Chemical Biology,2015,29:100-107.
  • 5SINGH J,SUHAG M,DHAKA A.Augmented digestion of lignocellulose by steam explosion,acid and alkaline pretreatment methods:A review[J].Carbohydrate Polymers,2015,117:624-631.
  • 6HUMPULA JF,UPPUGUNDLA N,VISMEH R,et al.Probing the nature of AFEX-pretreated corn stover derived decomposition products that inhibit cellulase activity[J].Bioresource Technology,2014,152:38-45.
  • 7SAHARE P,SINGH R,LAXMAN S,et al.Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob[J].Applied Biochemistry and Biotechnology,2012,168(7):1 806-1 819.
  • 8MARTIN C,THNOMSEN AB.Wet oxidation pretreatment of lignocellulosic residues of sugarcane,rice,cassava and peanuts for ethanol production[J].Journal of Chemical Technology and Biotechnology,2007,82(2):174-181.
  • 9MA LJ,CUI YZ,Cai R,et al.Optimization and evaluation of alkaline potassium permanganate pretreatment of corncob[J].Bioresouce Technology,2015,180:1-6.
  • 10ANTONIOUS EA,HARTOG N,van BREUKEL BM,et al.Aquifer pre-oxidation using permanganate to mitigate water quality deterioration during aquifer storage and recovery[J].Applied Geochemistry,2014,50:25-36.

二级参考文献20

  • 1Celinska E, Grajek W. Biotechnological production of 2,3-butanediol--current state and prospects. Biotechnol Adv, 2009, 27(6): 715-725.
  • 2Ji XJ, Huang H, Ouyang PK. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv, 2011 29(3): 351-364.
  • 3Da Silva GP, Mack M, Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv, 2009, 27(1): 36-39.
  • 4Petrov K, Petrova P. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol, 2009, 84(4): 659665.
  • 5De Boer AS, Diderichsen B. On the safety of Bacillus subtilis and B. amyloliquefaciens: a review. Appl Microbiol Biotechnol, 1991, 36(1): 1-4.
  • 6Yang TW, Rao ZM, Zhang X, et at Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus" amyloliquefaciens. J Basic Microbiol, 2011, 51 (6): 6504558.
  • 7Booth I. Regulation of cytoplasmic pH in bacteria. Microbiol Rev, 1985, 49(4): 359-378.
  • 8Biebl H, Zeng AP, Menzel K, et al. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Aool Microbiol Biotechnol, 1998, 50(1): 24-29.
  • 9Ji'(J, Huang H, Du J, et ai. Eafianced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour Tectmol, 2009, 100(13): 3410-3414.
  • 10Petrov K, Petrova P. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol, 2010, 87(3): 943-949.

共引文献3

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部