期刊文献+

考虑几何非线性的杆系结构弯曲变形样条有限点法 被引量:1

Considering Geometric Nonlinearity of Truss Structural Bending Deformation Spline Finite Point Method
原文传递
导出
摘要 研究了杆系结构考虑几何非线性的大挠度弯曲变形问题,推算并验证了一种考虑几何非线性的杆系结构弯曲变形计算新方法.以三次B样条函数为基函数,采用广义参数法,构造出梁的样条基函数,通过最小势能原理,建立了杆系结构考虑几何非线性的刚度方程,对处于弹性范围内的杆系结构的大变形弯曲问题进行了计算,提出了考虑几何非线性时杆系结构弯曲变形计算的样条有限点法.结果表明:方法不用进行单元坐标变换、划分等分数少、收敛速度快且计算精度较高,是一种较传统有限元法更简单且可行的方法. Truss structure was studied considering geometric nonlinear problem of large deflection bending deformation,calculate and validate a considering geometric nonlinearity of truss structure is a new method to calculate the bending deformation;With cubic B spline function as the base functions,using the generalized parameter method,constructs the beam of the b-spline basis function,through the principle of minimum potential energy,truss structure is established considering the geometric nonlinear stiffness equations,in the elastic bar system within the scope of large deformation of the structure of bending problem was calculated,proposed considering geometric nonlinear truss structural bending deformation calculation of the spline finite point method.Results show that the method need not unit coordinate transform,the dividing points less,such as fast convergence rate,and high calculation accuracy is a more traditional finite element method is simple and feasible method.
作者 庞毅玲 PANG Yi-ling(Department of Civil Engineering, Guangxi Polytechnic of Construction, Nanning 530007, Chin)
出处 《数学的实践与认识》 北大核心 2016年第20期173-178,共6页 Mathematics in Practice and Theory
基金 广西高校中青年教师基础能力提升项目(2016YB682)
关键词 杆系结构 几何非线性 大变形弯曲 样条有限点法 truss structures geometric nonlinearity large deformation bending spline finite point method
  • 相关文献

参考文献10

二级参考文献17

  • 1蔡松柏,王兰生.独塔斜拉桥非线性稳定分析的简捷算法[J].贵州大学学报(自然科学版),1996,13(4):197-205. 被引量:1
  • 2朱慈勉,计算结构力学,1992年
  • 3陆念力,建筑机械,1990年,9期
  • 4谢贻权,弹性和塑性力学中的有限单元法,1981年
  • 5邓长根,同济大学学报,1994年,增刊
  • 6Dmitrochenko Oleg N, Hussein Bassam A, Shabana Ahmed A. Coupled deformation modes in the large deformation fmite element analysis: Generalization [J]. Journal of Computational and Nonlinear Dynamics, 2009, 4(2): 1--8.
  • 7Stangl Michael, Gerstmayr Johannes, Irschik Hans. A large deformation planar finite element for pipes conveying fluid based on the absolute nodal coordinate formulation [J]. Journal of Computational and Nonlinear Dynamics, 2009, 4(3): 1--8.
  • 8Bathe K J. Finite element procedure [M]. New Jersev: Prentice Hall, 1996: 339--352.
  • 9Thai HuuTai, Kim SeungEock. Second-order inelastic dynamic analysis of steel frames using fiber hinge method [J]. Journal of Constructional Steel Research, 2011.67(10): 1485-- 1494.
  • 10Dufva K E, Sopanen J T, Mikkola A M. A two-dimensional shear deformable beam element based on the absolute nodal coordinate formation [J]. Journal of Sound and Vibration, 2005, 280: 719--738.

共引文献27

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部