期刊文献+

基于伪类光超曲面奇点分类的教学研究 被引量:1

Research on the Teaching of Singularity Classification of Pseudo Lightlike Hypersurfaces
原文传递
导出
摘要 在微分几何的教学中,曲线,曲面理论是最主要的基础理论知识.欧氏空间中密切曲线在微分几何学中具有重要的研究价值.主要运用具有类光向量的费雷内标架讨论在四维Minkowski空间中与欧氏空间不同的一类特殊密切曲线(伪类光曲线)的一些几何性质,同时通过横截性原理给出了由伪类光曲线生成的伪类光超曲面的局部几何性质与奇点分类. The theories of curves and surfaces are the most important in the teaching of differential geometry teaching.The Euclidean rectifying curves have many interesting geometric properties.This paper introduces the notions of pseudo null curves in Minkowski 4-space,which is different from Euclidean rectifying curves,using new Frenet frame with null vectors.Meanwhile,some geometrical characterizations and the singularities of pseudo null hypersurfaces,which are generated by pseudo null curves,are considered in this paper.
作者 孙建国 张会娜 吕锋 SUN Jian-guo ZHANG Hui-na LV Feng(School of Science, China University of Petroleum (east China), Qingdao 266580, Chin)
出处 《数学的实践与认识》 北大核心 2016年第20期259-264,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11601520) 山东省自然科学基金(ZR2014AQ016 ZR2015AL003) 中央高校创新基金(15CX02068A) 中国石油大学(华东)青年课程教学改革项目(QN201530)
关键词 伪类光超曲面 MINKOWSKI空间 奇点 高度函数 通有性 pseudo null hypersurfaces Minkowski space singularity height function generic properties
  • 相关文献

参考文献9

  • 1Bruce A.Vacuum states in de Sitter space[J].Phys Rev D,1985,32:3136-3149.
  • 2金明浩,裴东河.三维Minkowski空间中类空轴旋转曲面的分类[J].数学的实践与认识,2013,43(5):257-264. 被引量:3
  • 3Fusho T,Izumiya S,Lightlike surfaces of spacelike curves in de Sitter 3-space[J].J Geom,2008(88):19-29.
  • 4O'Neill B.Semi-Riemannian geomerty with applications to relativity[M].Academic Press,London,1983.
  • 5Ferrandez A,Gimenez A,Lucas P.Geometrical particle models on 3D null curves[J].Phys Lett B,2002(543):311-317.
  • 6Ilarslan K,Nesovic E.Some characterizations of null,pseudo null and partially null rectifying curves in Minkowski space-time[J].Taiwan Residents J Math,2008(12):1035-1044.
  • 7Urbantke H.Local differential geometry of null curves in conformally flat space-time[J].J Math Phys,1989(30):2238-2245.
  • 8Sun J G,Pei D H.Families of Gauss indicatrices on Lorentzian hypersurfaces in pseudo-spheres in semi-Euclidean 4 space[J].J Math Anal Appl,2013(400):133-142.
  • 9孙建国,裴东河.几类特殊曲线的微分几何理论研究[J].东北师大学报(自然科学版),2016,48(2):40-43. 被引量:4

二级参考文献19

  • 1Ruh E A and J. Vilms. The tension field of the Gauss map[J]. Trans Amer Math Soc, 1970(149): 569-573.
  • 2Dillen F, Pas J and Verstralen L. On the Gauss map of surfaces of revolution[J]. Bull Inst Math Acad Sinica, 1990, 18(3): 239-246.
  • 3Choi S M. On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space[J]. Tsukuba J Mathe, 1995, 19(2): 351-367.
  • 4Baikoussis C and Blair D E. On the Gauss map of ruled surfaces[J]. Glasgow Math J, 1992, 34(3): 355-359.
  • 5Choi S M. On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space[J]. Tsukuba J Math, 1995, 19(2): 285-304.
  • 6Kim Y H and Yoon D W. Ruled surfaces with finite type Gauss map in Minkowski spaces Soochow[J]. J Mathe, 2000, 26: 85-96.
  • 7Chen B Y, Choi M and Kim Y H. Surfaces of Revolution with pointwise 1-type Gauss map[J]. J Korean Mathe Soc, 2005, 42: 447-455.
  • 8Chen B Y and Piccinni P. Submanifolds with finite type Gauss map[J]. Bull Austral Math Soc, 1987, 35: 161-186.
  • 9ARSLAN K,OZGU C.Curves and surfaces of AW(k)-type[M],Singapore:World Scientific,1999:21-26.
  • 10DUFFAL K L,JIN D H.Null curves and hypersurfaces of semi-riemannian manifolds[M].Singapore:World Scientific,2007:87-103.

共引文献5

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部