期刊文献+

基于模糊逻辑的室内导航步长估计方法研究 被引量:11

Research on the method of step length estimation in indoor navigation system based on fuzzy logic
下载PDF
导出
摘要 目前,基于微机械系统(MEMS)的行人航迹推算(PDR)室内导航定位系统都会面临步长估计的问题,因此提出了一种基于模糊逻辑的非线性步长估计方法。首先采用非线性步长估计方法模型,然后以步频、身高、体重作为逻辑系统输入变量设计模糊逻辑控制器,得到可变的步长估计系数,从而实现对步长动态估算。通过对30 m以内多次室内行走的实验结果分析表明,基于模糊逻辑的步长估计方法平均步长准确率可达到92%,与传统的步长估计算法相比提高约9%,有效提高了步长估计精度。 Currently, most of Pedestrian Dead Reckoning (PDR) indoor navigation system based on Micro-Mechanical Systems (MEMS) are faced with the problem of estimation step, a nonlinear step length estimation method based on fuzzy logic is proposed. First,this paper chooses a nonlinear step estimation model. Then it designs a fuzzy logic controller using the stride frequency, height and weight as a logic input variables of the fuzzy logical system. After that the variable step length estimation coefficients are gotten. Finally the estimation of dynamic step length is gotten. Through the indoor walking experiments within 30 m, the results show the accuracy of this method based on fuzzy logical method can get 93%, improved about 9% comparing with the traditional step estimation algorithm, which effectively improves the estimation precision of step length estimation.
出处 《电子技术应用》 北大核心 2016年第11期59-61,65,共4页 Application of Electronic Technique
基金 陕西省科技统筹创新工程计划项目(2014KTCQ01-21) 西安邮电大学研究生创新基金项目(CXL2015-38)
关键词 行人航迹推算 室内定位 步长估计 模糊逻辑 航向 步长 PDR indoor positioning step length estimation fuzzy logic heading stride length
  • 相关文献

参考文献15

  • 1ZHOU L, WANG H.Toward blind scheduling in mobile media cloud : fairness, simplicity, and asymptotic optimality[J]. IEEE Transactions on Multimedia,2013,15(4):735-746.
  • 2BAN R, KAJI K, HIROI K,et al.Indoor positioning method integrating pedestrian dead reckoning with magnetic field and WiFi fingerprints[C].Mobile Computing and Ubiquitous Networking(ICMU), 2015 Eighth International Conference on.IEEE, 2015 : 167-172.
  • 3GARCIA E,POUDEREUX P,HERNANDEZ A, et al.A robust UWB indoor positioning system for highly complex environments[C].IEEE International Conference on Industrial Technology. IEEE, 2015.
  • 4JERABEK J,ZAPLATILEK L,POLA M.A proposal of radio uhrawideband systems for precision indoor localization[C]. Radioelektronika. IEEE, 2015.
  • 5Muboz-Organero M ,KLOOS C D ,Mui~oz-Merino P J.Using bluetooth to implement a pervasive indoor positioning system with minimal requirements at the application level[J]. Mobile Information Systems, 2012,43(8) : 73-82.
  • 6BAHILLO A,ANGULO I,ONIEVA E,et al.Low-cost Bluetooth foot-mounted IMU for pedestrian tracking in industrial environments[C].Industrial Technology(ICIT),2015 IEEE International Conference on.IEEE,2015.
  • 7Muboz-Organero M,KLOOS C D,Mut~oz-Merino P J.Using bluetooth to implement a pervasive indoor positioning system with minimal requirements at the application levcl[J].Mobile Information Systems, 2012,43(8) : 73-82.
  • 8孙作雷,茅旭初,田蔚风,张相芬.基于动作识别和步幅估计的步行者航位推算[J].上海交通大学学报,2008,42(12):2002-2005. 被引量:18
  • 9SCARLET'I" J.Enhancing the performance of pedometers using a single accelerometer[Z].Application Note,Analog Devices, 2007.
  • 10LI F.A reliable and accurate indoor localization method using phone inertial sensors [C]. UbiComp' 12. ACM. New York, 2012.

二级参考文献46

  • 1韩东升,杨维,刘洋,张玉.煤矿井下基于RSSI的加权质心定位算法[J].煤炭学报,2013,38(3):522-528. 被引量:64
  • 2殷德奎,俞卞章,佟明安.红外热图像像质评定方法[J].激光与红外,1996,26(2):75-79. 被引量:9
  • 3Ladetto Q,Verhaert K. Pedestrian navigation apparatus and method [P]. U S Patent: US20070260418 A1. 2007.
  • 4RenaudinV, Yalak O, Tom P. Hybridization of MEMS and assisted GPS for pedestrian navigation [J]. Inside GNSS, 2007, 2(1): 34-42.
  • 5Lee S W, Mase K. A personal indoor navigation system using wearable sensors [C]//Proc Second Int Symp on Mixed Reality. USA: ISMR, 2001: 147-148.
  • 6Judd C T. A personal dead reckoning module [J], Institute of Navigation's ION GPS, 1997, 97: 1-5.
  • 7Bao L, Intille S S. Activity recognition from user-annotated acceleration data [M]. Berlin: Springer, 2004.
  • 8Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 9Lin C L , Fan K C. Biometric verification using thermal images of palm-dorsa vein patterns [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14 (2) :199 -213.
  • 10Wang L, Graham L. Near-and far-infrared imaging for vein pattern biometrics [ C ]//IEEE ICAVSS, IEEE Computer Society Press ,Los Alamitos ,2006.

共引文献46

同被引文献69

引证文献11

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部