期刊文献+

统计学习理论基础研究新进展 被引量:2

New Progress in Basic Research of Statistical Learning Theory
下载PDF
导出
摘要 统计学习理论是研究小样本情况下机器学习的理论。在该理论基础上发展起来的支持向量机在许多方面都有应用。系统地整理分析了统计学习理论基础研究的文献,将其主要划分为概率空间的扩展,随机样本的变化,以及两者相结合三个方面介绍了统计学习理论基础研究的新进展,并对未来的发展进行了展望。 Statistical learning theory is the study of small sample situation of machine learning theory. Support vector machine(SVM) is developed on the basis of this theory and it is used in many ways. Basic research literature of statistical learning theory is systematically sorted out and analyzed,which is mainly divided into three aspects, the expansion of the probability space, random sample variation, and the combination of space and sample. This paper introduces the research progress of statistical learning theory foundation, and the future development is prospected.
作者 杜二玲 范毅君 李海军 Du Erling Fan Yijun Li Haijun(Basic Teaching Department of China University of Geosciences Great Wall College, Baoding Hebei 071000)
出处 《现代工业经济和信息化》 2016年第18期27-28,共2页 Modern Industrial Economy and Informationization
基金 中国地质大学长城学院科研项目(ZDCYK01503)
关键词 统计学习理论 非概率空间 非随机样本 statistical learning theory non-probability space nonrandom sample
  • 相关文献

参考文献5

二级参考文献35

  • 1哈明虎,李颜,李嘉,田大增.Sugeno测度空间上学习理论的关键定理和一致收敛速度的界[J].中国科学(E辑),2006,36(4):398-410. 被引量:26
  • 2HA Minghu,LI Yan,LI Jia,TIAN Dazeng.The key theorem and the bounds on the rate of uniform convergence of learning theory on Sugeno measure space[J].Science in China(Series F),2006,49(3):372-385. 被引量:16
  • 3Vapnik V N. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1995:69 - 110.
  • 4Vapnik V N. Statistical learning theory [M]. New York: A Wiley-inter science Publication, 1998:219 - 268.
  • 5Vapnik V N. An overview of statistical learning theory [J]. IEEE Transaction on Neural Networks, 1999,10(5) : 988 -999.
  • 6VAPNIK V N. Statistical learning theory[M].New York:A Wiley-Interscience Publication,1998.
  • 7VAPNIK V N. An overview of statistical learning theory[J].{H}IEEE Transactions on Neural Networks,1999,(5):988-999.
  • 8SUN Xiaojing,WANG Chao,HA Minghu. The key theorem of learning theory based on hybrid variable[A].Guilin,2011.
  • 9哈明虎;王超;张植明.不确定统计学习理论[M]{H}北京:科学出版社,2010.
  • 10CHERKASSKY V,MA Y Q. Practical selection of SVM parameters and noise estimation for SVM regression[J].{H}NEURAL NETWORKS,2004,(1):113-126.

共引文献9

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部