摘要
统计学习理论是研究小样本情况下机器学习的理论。在该理论基础上发展起来的支持向量机在许多方面都有应用。系统地整理分析了统计学习理论基础研究的文献,将其主要划分为概率空间的扩展,随机样本的变化,以及两者相结合三个方面介绍了统计学习理论基础研究的新进展,并对未来的发展进行了展望。
Statistical learning theory is the study of small sample situation of machine learning theory. Support vector machine(SVM) is developed on the basis of this theory and it is used in many ways. Basic research literature of statistical learning theory is systematically sorted out and analyzed,which is mainly divided into three aspects, the expansion of the probability space, random sample variation, and the combination of space and sample. This paper introduces the research progress of statistical learning theory foundation, and the future development is prospected.
作者
杜二玲
范毅君
李海军
Du Erling Fan Yijun Li Haijun(Basic Teaching Department of China University of Geosciences Great Wall College, Baoding Hebei 071000)
出处
《现代工业经济和信息化》
2016年第18期27-28,共2页
Modern Industrial Economy and Informationization
基金
中国地质大学长城学院科研项目(ZDCYK01503)
关键词
统计学习理论
非概率空间
非随机样本
statistical learning theory
non-probability space
nonrandom sample