期刊文献+

数学表征与变换能力的评价指标体系研究综述 被引量:8

Assessment and Analytical Framework of K-12 Mathematical Representational and Translate Competency in China
原文传递
导出
摘要 表征与变换能力是数学能力发展的重要组成部分。本文在梳理数学表征与变换能力相关研究的基础上,构建适合我国义务教育阶段数学表征与变换能力的评价框架和指标体系。希望可以通过指向性测试任务的编制,将学生数学表征变换能力水平定位在不同的评价维度和指标下,为更为深入细致地研究我国中小学生数学表征和变换能力发展特点提供思路。 Representational and transform ability plays an important role in the development of mathematical competency. Based on the related researches internationally, this article focuses on the assessment and analytical framework which is built for K-12 students in China. Different tasks are developed for more accurate and deep analysis of students' representational and transform ability, which we hope can provide ideas for future researchers.
作者 张晋宇 姜慧慧 谢海燕 ZHANG Jinyu JIANG Huihui XIE Haiyan(Department of Mathmatics, East China Normal University, Shanghai 200241, China Shanghai High School, Shanghai 200231, China)
出处 《全球教育展望》 CSSCI 北大核心 2016年第11期13-21,共9页 Global Education
基金 教育部人文社会科学重点研究基地重大项目"义务教育阶段数学学科核心能力模型与测评框架研究"(项目编号:11JJD880027)阶段性成果
关键词 数学学科 表征与变换能力 评价框架 指标体系 mathematics curriculum representational competency assessment framework coding system
  • 相关文献

参考文献21

  • 1Even, R. Factors Involved in Linking Representations of Functions [J]. The Journal of Mathematical Behavior, 1998,17 ( 1 ) : 105 - 121.
  • 2<进入21世纪的中小学数学教育行动纲领>课题组.进入21世纪的中小学数学教育行动纲领(讨论稿)(1997~2010)[J].上海教育,1997,0(9):7-13. 被引量:6
  • 3美国科学促进协会.科学素养的基准[M].中国科学技术协会,译.北京:科学普及出版社,2011.
  • 4Gagatsis, A. & M. Shiakalli. Ability to Translate from One Representation of the Concept of Function to Another and Mathematical Problem Solving [J]. Educational Psychology,2004,24 ( 5 ) : 645 - 657.
  • 5Goldin, G. A. Representational Systems, Learning, and Problem Solving in Mathematics [J]. The Journal of Mathematical Behavior, 1998,17 (2) : 137 - 165.
  • 6Niss,M. Mathematical Competencies and the Learning of Mathematics:The Danish KOM Project[J]. 21303:115 -124.
  • 7Arcavi, A. The Role of Visual Representations in the Learning of Mathematics[J]. Educational Studies in Mathematics ,2003,52 ( 3 ) :215 - 241.
  • 8Pape,S. J. & M. A. Tchoshanov. The Role of Representation(s) in Developing Mathematical Understanding[J]. Theory into Practice,2001,40 ( 2 ) : 118 - 127.
  • 9Edwards,L. D. Embodying Mathematics and Science [J]. Journal of M~athematical Behavior, 1998,17 ( 1 ) :53 - 78.
  • 10Scheiter, K., P. Gerjets & J. Schuh. The Acquisition of Problem-solving Skills in Mathematics [J]. Instructional Science ,2010,38 (5) :487 - 502.

二级参考文献17

  • 1孙以泽.数学能力的成分及其结构[J].南京晓庄学院学报,2003,19(2):97-99. 被引量:20
  • 2徐斌艳.关于德国数学教育标准中的数学能力模型[J].课程.教材.教法,2007,27(9):84-87. 被引量:32
  • 3Ministry of' Education Singapore. Secondary Mathematics Syllabus. [ EB/OL] http://www, moe. gov. sg/edu- ( ation/syllabuses/sciences/files/maths - secondary, pdf. 2011.
  • 4中华人民共和网教育郜.义务教育数学课程标准(2011年版)[M].北京:北京师地大学出版社,2011.
  • 5Niss, Mogens. Mathematical Competencies and the Learning of Mathematics: The Danish KOM Project. [ EB/OL] http ://w3. msi. vxu. se/users/hso/aaa niss. pdf. 2011.
  • 6Tmaaer, Ross. Exploring mathematical competencies [J]. Research Developments. 2011, Vol. 24, Article 5.
  • 7Silver, E. A.. On mathematical problem posing [J]. For the Learning of Mathematics, 1994, Vol. 14, 19 -28.
  • 8Leung, S. S.. Mathematical problem posing: The influence of task formats, mathenmtics knowledge, and reative thinking [J ]. In I. Hirabayashi, N. Nohda, K. Shigematsu, & F. Lin (Eds.). Proceedings of the 17th International conference of the International Group for the psychology of Mathenmtics Education, 1993, Vol. l]I (pp. 33-40).Tsukuba, Japan: Author.
  • 9Cai, Jin Fa & Frank, K. & Lester, Jr .. Solution representations and pedagogical representations in Chi- nese and U.S. classrooms [ J ]. Journal of Mathematical Behavior,2005 (24) :221 - 237.
  • 10Blum,W. etc.. Modelling and application in mathematics education [ M]. The 14th ICMI study. Springer. 2007.

共引文献105

同被引文献48

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部