期刊文献+

基于AAWDA-PP回归模型的边坡稳定性评价

Slope Stability Evaluation based on AAWDA-PP Regression Model
原文传递
导出
摘要 在边坡的稳定性评价中保证边坡分类的准确度十分重要.人工非洲野狗群体智能算法,能够通过模拟野狗的觅食行为来对目标函数进行寻优.结合投影寻踪算法以及阻滞增长曲线函数,建立人工非洲野狗优化投影寻踪模型,利用非洲野狗算法AAWDA优化投影指标函数及阻滞增长曲线函数参数,提高了模型求解的准确性,通过对求解后的结果建立回归模型,然后根据分级阈值对边坡等级进行分类,测试结果显示较好的精度.将模型应用于案例边坡的稳定性分析,并同PSO-PP模型,ANN模型所得结果进行比较分析,得出运用AAWDA-PP回归模型预测结果与经验值之间的误差最小,说明模型在研究边坡稳定性评价分级中更加准确有效. Ensuring the accuracy of classification in slope stability evaluation is very important.Artificial African wild dog,swarm intelligence algorithm can simulate by the dragons of foraging behavior to optimize the objective function.Combining projection pursuit algorithm and logistic curve function,establishing the optimal projection pursuit model artificial African wild dog.We use the African wild dog(AAWDA) algorithm optimize the projection index function and logistic curve function(LCF),improve the accuracy of the model,through the results of solving after establish regression model,and then classified according to classification threshold on the slope grade,the test results show that the better precision.Will be applied in the case of the slope stability analysis,the model with PSO-PP model,compares and analyses the results of ANN model using AAWDA-PP regression model,minimum error between the predicted results and experience shows that the model is more accurate and effective in the evaluation and grading of slope stability.
作者 姜英姿 闫守志 石宝 JIANG Ying-zi YAN Shou-zhi SHI Bao(School of Mathematic and Physical Science, Xuzhou Institute of Technology, Xuzhou 221111, China)
出处 《数学的实践与认识》 北大核心 2016年第19期156-163,共8页 Mathematics in Practice and Theory
基金 国家级大学生创新训练项目(201511998011Z)
关键词 边坡稳定性分析 非洲野狗算法 投影寻踪 优化函数 阻滞增长曲线 slope stability evaluation AAWDA projection pursuit optimize function logistic curve function
  • 相关文献

参考文献12

  • 1臧秀平,阮含婷,李萍,方朋凯,张建.岩体分级考虑因素的现状与趋势分析[J].岩土力学,2007,28(10):2245-2248. 被引量:20
  • 2谢全敏,朱瑞赓.岩体边坡稳定性灰色聚类空间预测方法[J].金属矿山,1997,26(6):1-5. 被引量:31
  • 3夏元友,朱瑞赓.岩质边坡稳定性多人多层次模糊综合评价系统研究[J].工程地质学报,1999,7(1):46-53. 被引量:50
  • 4Chen L Q,Peng Z B,Chen W,et al.Artificial neural network simulation on prediction of clay slope stability based on fuzzy controller[J].Journal of Central South University,2009,40(5):1381-1387.
  • 5Netterfield C B,Devlin M J,Jarosik N,et al.A Measurement of the angular power spectrum of the anisotropy in the cosmic microwave background[J].Astrophysical Journal,1997,474(1):47-66.
  • 6Suo X Z,Combescure A.Double virtual crack extension method for crack growth stability assessment[J].International Journal of Fracture,1992,57(2):127-150.
  • 7Pierre D,Deng W,Flytzani-Stephanopoulos M.The importance of strongly bound pt-ceo x species for the water-gas shift reaction:catalyst activity and stability evaluation[J].Topics in Catalysis,2007,46(3-4):363-373.
  • 8FRIEDMAN J H,TUKEY J W.A projection pursuit algorithmfor exploratory data analysis[J].IEEE Trans Comput,1974,23(9):881-890.
  • 9Subramanian C,Sekar ASS,Subramanian K.A New Engineering Optimization Method:African Wild Dog Algorithm[J].International Journal of Soft Computing,2013,8(3):163-10.
  • 10吴虎胜,张凤鸣,吴庐山.一种新的群体智能算法--狼群算法[J].系统工程与电子技术,2013,35(11):2430-2438. 被引量:189

二级参考文献47

共引文献390

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部