摘要
研究了一类恰含2n个非零元的n(n≥5)阶零-非零模式矩阵P.证明了将P中所有非零元规定适当的符号,或换为适当的复数,分别可得到一个极小谱任意符号模式矩阵A和一个极小谱任意的复符号模式矩阵S.
This paper researches a class of zero-nonzero patterns P of order n with 2n nonzero entries.It is proved that all the nonzero elements in P can be set appropriate symbols,or be replaced by proper complex numbers,which can obtain a minimal spectral arbitrary sign pattern matrix A and a minimal spectral arbitrary complex sign pattern matrix S.
作者
张雅婷
邵燕灵
ZHANG Ya-ting SHAO Yan-ling(School of Science, North University of China, Taiyuan 030051, China)
出处
《数学的实践与认识》
北大核心
2016年第19期252-258,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(11071227)
山西省回国留学人员科研资助项目(12-070)
关键词
符号模式
复符号模式
极小谱任意
幂零-雅可比
sign pattern
complex sign pattern
minimal spectrally arbitrary pattern
nilpotent-Jacobian method