期刊文献+

算子Dunkl-Williams型不等式

Dunkl-Williams Type Inequalities for Operators
原文传递
导出
摘要 在于讨论和经典Dunkl-Williams型不等式相类似的算子不等式,得到了几个算子Dunkl-Williams型不等式,并将其与现有的不等式进行了比较,结果表明,所得的结果是前期结果的推广和改进. The purpose of this paper is to discuss inequalities related to operator versions of the classical Dunkl-Williams inequality.We obtain some Dunkl-Williams type inequalities for operator.Our results are generalizations or refinements of some existing ones.
作者 阮杰昌 RUAN Jie-chang(Basic Education Department, Yibin Vocational and Technical College, Yibin 644003, Chin)
出处 《数学的实践与认识》 北大核心 2016年第19期288-291,共4页 Mathematics in Practice and Theory
关键词 Dunkl-Williams不等式 算子不等式 算子绝对值 Dunkl-Williams inequality operator inequality operator absolute value
  • 相关文献

参考文献7

  • 1Dunkl C F,Williams K S.A simple norm inequality[J].Amer Math Monthly,1964(71):53-54.
  • 2Maligranda L.Simple norm inequalities[J].Amer Math Monthly,2006(113):256-260.
  • 3Moslehian M S,Dadipour F,Rajic R,Marie A.A glimpse at the Dunkl-Williams inequality[J].Banach J Math Anal,2011(5):138-151.
  • 4Dadipour F.Moslehian,Dunkl-Williams inequality for operators associated with p-angular distance[J].Nihonkai Math J,2010(21):11-20.
  • 5Dadipour F,Moslehian M S.An approach to operator Dunkl-Williams inequalities[J].Publ Math Debrecen,2011(79):109-118.
  • 6Pecaric J.Rajic,inequalities of Dunkl-Williams type for absolute value perators[J].J Math Inequal,2010(4):1-10.
  • 7Zou L,He C.On operator Bohr type inequalities[J].Math Inequal Appl,2014(17):1161-1169.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部