期刊文献+

基于Hadoop的超像素分割算法 被引量:3

Super pixel segmentation algorithm based on Hadoop
下载PDF
导出
摘要 针对高分辨率图像像素分割时间复杂度高的问题,提出了超像素分割算法。采用超像素代替原始的像素作为分割的处理基元,将Hadoop分布式的特点与超像素的分块相结合。在分片过程中提出了基于多任务的静态与动态结合的适应性算法,使得Hadoop分布式文件系统(HDFS)的分块与任务分发的基元解耦;在每一个Map节点任务中,基于超像素分块的边界性对超像素的形成在距离和梯度上进行约束,提出了基于分水岭的并行化分割算法。在Shuffle过程的超像素块间合并中提出了两种合并策略,并进行了比较。在Reduce节点任务中优化了超像素块内合并,完成最终的分割。实验结果表明.所提算法在边缘查全率(BR)和欠分割错误率(UR)等分割质量指标上优于简单线性迭代聚类(SLIC)算法和标准分割(Ncut)算法,在高分辨率图像的分割时间上有显著降低。 In view of the high time complexity of pixel segmentation, a super pixel segmentation algorithm was proposed for high resolution image. Super pixels instead of the original pixels were used as the segmentation processing elements and the characteristics of Hadoop and the super pixels were combined. Firstly, a static and dynamic adaptive algorithm for multiple tasks was proposed which could reduce the coupling of the blocks in HDFS ( Hadoop Distributed File System) and task arranging. Secondly, based on the constraint in the distance and gradient on the super pixel formed by the boundary of super pixel block, a parallel watershed segmentation algorithm was proposed in each Map node task. Meanwhile, two merging strategies were proposed and compared in the super pixel block merging in the Shuffle process. Finally, the combination of super pixels was optimized to complete the final segmentation in the Reduce node task. The experimental results show that the proposed algorithm is superior to the Simple Linear Iterative Cluster (SLIC) algorithm and Normalized cut (Ncut) algorithm in Boundary Recall ratio (BR) and Under segmentation Error (UE), and the segmentation time of the high-resolution image is remarkably decreased.
出处 《计算机应用》 CSCD 北大核心 2016年第11期2985-2992,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(61472095 41306086) 国家自然科学基金青年科学基金资助项目(61502116) 黑龙江省教育厅智能教育与信息工程重点实验室开放基金资助项目~~
关键词 HADOOP 图像分割 超像素 并行算法 MAPREDUCE Hadoop image segmentation super pixel parallel algorithm MapReduce
  • 相关文献

参考文献30

  • 1ZHANG X L, LI X F, FENG Y C. A medical image segmentation algorithm based on bi-directional region growing[J]. International Journal for Light and Electron Optics, 2015,126(20):2398-2404.
  • 2NIELSEN M M. Remote sensing for urban planning and management:the use of window-independent context segmentation to extract urban features in Stockholm[J]. Computers, Environment and Urban Systems, 2015, 52:1-9.
  • 3REN X F, MALIK J. Learning a classification model for segmentation[C]//Proceedings of the 9th IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2003:10-17.
  • 4SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):888-905.
  • 5FELZENSWALB P F, HUTTENLOCHER D P. Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2):167-181.
  • 6MOORE A, PRINCE S, WARRELL J, et al. Superpixel lattices[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2008:1-8.
  • 7VEKSLER O, BOYKOV Y, MEHRANI P. Superpixels and supervoxels in an energy optimization framework[C]//Proceedings of the 11th European Conference on Computer Vision. Berlin:Springer-Verlag, 2010:211-224.
  • 8LIU M Y, TUZEL O, RAMALINGAM S, et al. Entropy rate superpixel segmentation[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2011:2097-2104.
  • 9ZHANG Y, HARTLEY R, MASHFORD J, et al. Superpixels via pseudo-boolean optimization[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE, 2011:1387-1394.
  • 10BERGH M V D, BOIX X, ROIG G, et al. SEEDS:superpixels extracted via energy-driven sampling[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin:Springer-Verlag, 2012:13-26.

二级参考文献40

  • 1REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17.
  • 2FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181.
  • 3SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737.
  • 4SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905.
  • 5MOORE A, PRINCE S, WARRELI. J, et al. Superpixel lattices [ C]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2008 : 1-8.
  • 6LIU Ming-yu, TUZEL O, RAMALINGAM S,et al. Entropy rate su- perpixel segmentation [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2011:2097-2104.
  • 7VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algoritlml based on inlmeision simulations[ J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1991, 13 (6) : 583-598.
  • 8COMANICIU D, MEER P. Mean shift: a rnhust approrah toward fea- ture space analysis[ J ]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence, 2002, 24(5): 603-619.
  • 9VEDALDI A, SOATTO S. Quick shift and kernel methods for mode seeking [ M ]//Computer Vision. Berlin: Springer-Verlag, 2008: 705-718.
  • 10LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. Turbotfi- xels: fast superpixels using geometric flows [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (12): 2290- 2297.

共引文献118

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部