期刊文献+

燃煤电厂CO_2捕集与系统集成的能耗与水耗分析 被引量:6

Analyses of Energy and Water Consumption for Coal-Fired Power Plant With CO_2 Capture and System Integration
原文传递
导出
摘要 CO_2捕集是目前降低电厂CO_2排放最直接有效的方法之一,但能耗过高成为限制其发展的最大障碍,同时水耗的增加也对现有电厂的集成带来了挑战,本文从CO_2捕集系统与电厂系统的集成角度出发,建立了集成系统的能耗与水耗模型,结合典型300 MW亚临界燃煤发电机组参数,分析了CO_2捕集对电厂的影响,考察了CO_2捕集系统的运行参数对集成系统能耗与水耗的变化关系。结果表明,集成CO_2捕集后电厂发电效率降低了近10个百分点,冷却循环水用量与总水耗增加了近25%,单位发电量冷却循环水量与水耗增加了70%以上,同时系统能耗与水耗随CO_2捕集参数的变化而呈现不同的变化趋势。 CO2 capture is one of the most direct and efficient way of reducing CO2 emissionsfrom coal-fired power plant. However, high energy penalty is the main obstacle of limiting its development, and the increased water consumption brings huge challenges for retrofitted plant. A model of energy and water consumption of the integrated system is established with a typical of 300 MW subcritical coal-fired power plant. System performance is conducted by investigating the impacts of CO2 capture on power plant, and the effects of operation parameters of CO2 capture on energy consumption and water consumption. Results show that power generation efficiency of the integrated system drops off nearly 10%, the amount of circulating cooling water and water consumption increases nearly 25%, while the specific cooling water and water consumption increase by more than 70%. Meanwhile, energy consumption and water consumption with the changes of CO2 capture parameters present different trends.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第11期2288-2295,共8页 Journal of Engineering Thermophysics
基金 国家自然科学基金青年科学基金(No.51506149) 天津市应用基础与前沿技术研究计划青年基金(No.15JCQNJC06700)
关键词 CO2捕集 燃煤电厂 捕集能耗 循环水量 水耗 CO2 capture coal-fired power plant energy penalty circulating cooling water water consumption
  • 相关文献

参考文献10

  • 1刘练波,郜时旺,许世森.燃煤烟气CO_2捕集系统与电厂系统集成分析[J].中国电机工程学报,2014,34(23):3843-3848. 被引量:25
  • 2Zhai H, Rubin ES, Versteeg PL. Water use at PulverizedCoal Power Plants With Postcombustion Carbon Cap-ture and Storage [J]. Environmental science & technology,2011, 45(6): 2479-2485.
  • 3Mimura T, Simayoshi H, Suda T, et al.Developments ofEnergy Saving Technology for Flue gas Carbon DioxideRecovery in Power Plant by Chemical Absorption Methodand Steam System [J]. Energy Conversion and Manage-ment, 1997, 38: S57-62.
  • 4MangalapallyHP, Notz R,Asprion N,et al. Pilot PlantStudy of Four New Solvents for Post Combustion CarbonDioxidecapture by Reactiveabsorption and Comparison toMEA [J]. International Journal of Greenhouse Gas Con-trol, 2012, 8: 205-216.
  • 5Zhang L, Chen J, Lv JX, et al. Progress and Developmentof Capture for CO2 by Ionic Liquids-A Review [J]. AsianJournal of Chemistry, 2013, 25(5): 2355-2358.
  • 6Cousins A, Wardhaugh LT, Feron PHM. A Survey of Pro-cess Flow Sheet Modifications for Energy Efficient CO2Capture From Flue Gases Using Chemical Absorption [J],International Journal of Greenhouse Gas Control, 2011,5(4): 605-619.
  • 7HUA Bing. Waste Water Saving for the Thermal PowerPlant [D]. Beijing: North China Electric Power University,2005.
  • 8Cycle-Tempo Release 5.0. Delft University of Technology,2007.
  • 9Amrollahi Z, Ertesvag IS, Bolland O. ThermodynamicAnalysis on Post-Combustion CO2 Capture of Natural-Gas-Fired Power Plant [J]. International Journal of Green-house Gas Control, 2011, 5(3): 422-426.
  • 10Zhang X, Fu KY,Liang ZW, et al. Experimental Studiesof Regeneration Heat Duty for CO2 Desorption Promdi-ethylenetriamine (DETA) Solution in a Stripper ColumnPacked WithDixon Ring Random Packing [J]. Fuel, 2014,136: 261-267.

二级参考文献21

  • 1黄斌,刘练波,许世森.二氧化碳的捕获和封存技术进展[J].中国电力,2007,40(3):14-17. 被引量:68
  • 2Seader J D, Henley E J. Separation process principles [M] 2nd ed. Hoboken, New Jersey: John Wiley & Sons. 2006: 206-215.
  • 3Rochelle G T. Amine scrubbing for CO2 capture [J]. Science, 2009, 325(9): 1652-1654.
  • 4Figueroa J D, Four T, Plasynski S, et al. Advances in CO2 capture technology-The U. S. department of energy's carbon sequestration program[J]. International Journal of Greenhouse GasControl, 2008, 2(1): 9-20.
  • 5Kanniche M, Gros-Bonnivard R, Jaud P. Pre- combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Applied Thermal Engineering, 2010, 30(1): 53-62.
  • 6Park S K, Kim T S, Jeong L. An integrated power generation system combining solid oxide fuel cell and oxy-fuel combustion for high performance and CO2 capture[J]. Applied Energy, 2011, 88(4): 1187-1196.
  • 7Huang Bin, Xu Shisen. Preliminary results and operational cost analysis of COz capture at the Huaneng Beijing coal-fired power plant[J]. Applied Energy, 2010, 87(11):3247-3254.
  • 8Chou C C, Shih Y S." A thermo- dynamic approach to the design and synthesis of plant utility system[J]. Industrial & Engineering Chemistry Research, 1987, 26(6): 1100-1108.
  • 9Douglas J M. Conceptual design of chemical processes [M]. NewYork: McGraw-Hill, 1988: 519-541.
  • 10Hammond G P, Akwe S S, Williams S. Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage[J]. Energy Procedia, 2011: 36(2):975-984.

共引文献24

同被引文献64

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部