期刊文献+

不同压力下对冲扩散火焰燃料型NO生成特性 被引量:1

Fuel NO Formations in Counterflow Diffusion Flames at Different Pressures
原文传递
导出
摘要 采用NH3模拟燃料氮,数值预测了Ar稀释的CH_4/空气对冲扩散火焰在不同压力下NO的生成,并讨论了燃料型NO生成量的影响因素。结果表明:随着燃料氮含量的增加,燃料型NO反应路径逐渐成为NO生成的主要路径。其生成量随着压力的增加而减少。燃料中CH_4含量和气流出口速度对燃料型NO均有一定影响。CH基团同时参与NO的生成与还原反应,在本文工况下对NO还原反应影响更大,随着燃料中CH_4含量的增加,NO峰值会略有减小。气体出口速度增加,高温区变小,反应物在高温区的停留时间变短,对NO还原反应影响强于NO生成反应,因此随着出口速度增加,NO峰值略有增加。 Fuel NO formations in counterflowing diluted NH3-doped CH4/Air diffusion flames at different pressures were numerically studied. Factors affecting fuel NO formations were also discussed. NH3 was added in the fuel stream as fuel nitrogen and fuel stream was diluted by Ar. Results show that fuel NO reaction path gradually becomes the dominating path in NO formation with the increasing NH3 content in the fuel stream. Fuel NO decreases as pressure increases. Both CH4 content in fuel stream and gas exit velocity have certain influence on fuel NO formation. CH radical is involved in several NO formation reactions and NO reduction reactions. It has a larger effect in NO reduction reactions under the conditions in this article, so maximum NO concentration in the flame decreases slightly with the increasing CH4 fraction in the fuel stream. Increasing gas exit velocity narrows high temperature zone and reduces the residence time of the reactants in the high temperature zone. It has a larger influence on NO reduction reactions than NO for- mation reactions. The maximum NO concentration thus increases slightly as gas exit velocity increases.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第11期2489-2493,共5页 Journal of Engineering Thermophysics
基金 国家自然基金项目(No.51176095 No.51476088)
关键词 压力 对冲扩散火焰 燃料氮 NO pressure counterfiow diffusion flames fuel nitrogen nitric oxide
  • 相关文献

参考文献1

二级参考文献11

  • 1张哲巅,王岳,聂超群,肖云汉.甲烷-湿空气对冲扩散火焰中CO的生成特性[J].工程热物理学报,2006,27(z2):203-206. 被引量:4
  • 2杨浩林,赵黛青,鲁冠军.CO_2稀释燃料对富氧扩散燃烧中NO_x生成的抑制作用[J].热能动力工程,2006,21(1):43-47. 被引量:18
  • 3曹玉春,魏新利,吴金星,王保东,马新灵.甲烷对冲扩散火焰NO_x生成动力学特性研究[J].热力发电,2007,36(6):41-45. 被引量:1
  • 4Sung C J, Liu J B, Law C K. Structural response of counterflow diffusion flames to strain rate variations[ J]. Combustion and Flame, 1995, 102: 481-492.
  • 5Ravikrishna R V, Laurendeau M N. Laser-induced fluorescence measurements and modeling of nitric oxide in methane-air and ethane-air counterflow diffusion flames [ J ]. Combustion and Flame, 2000, 120: 372-382.
  • 6Zhao D, Amashita H, Kiagawa K, et al. Behavior and effect on NO, formation of OH radical in methane-air diffusion flame with steam addition [ J ]. Combustion and Flame, 2002, 130: 352-360.
  • 7Beltrame A, Porshnev P, Merchan-Merchan W, et al. Soot and NO formation in methane-oxygen enriched diffusion flames[J]. Combustion and Flame, 2001, 124: 295-310.
  • 8Kee R J, Rupley F M, Miller J A. Chemkin-Ⅱ: A FORTRAN Chemical Kinetics Package for the Analysis of GasPhase Chemical Kinetics [ R ]. Sandia Report SAND898009. 1989.
  • 9Smith G P, Golden D M, Frenklach M, et al. GRI-Mech 3.0 [ DB/OL ]. http: //www. me. berkeley. edu/gri_ mech, 2000.
  • 10王海峰,陈义良,董刚,朱旻明.拉伸层流扩散火焰面结构及熄火的研究[J].工程热物理学报,2003,24(4):695-698. 被引量:9

共引文献1

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部