期刊文献+

n维单形的体积比

下载PDF
导出
摘要 给出了单形体积比的计算公式,得出了其渐进性质,计算了部分单形的体积比。 A calculation formula of simplex volume ratio was given, so that we can calculate its asymptotic property and some values of volume ratios.
作者 英起志
出处 《高教学刊》 2016年第23期263-264,共2页 Journal of Higher Education
关键词 N维 单形 John椭球 体积比 dimension simplex John ellipsoid volume ratio
  • 相关文献

参考文献6

  • 1John F.Extremum problems with inequalities assubsidiary conditions[M].Courant Anniversary Volume.New York:Interscience,1948:187-204.
  • 2R Howard.The John ellipsoid theorem[D].University of South Carolina,1997.
  • 3Keith Ball.Volume ratios and a reverse isoperimetric inequality[J].Journal of the London Mathematical Society,1991,4:351-359.
  • 4张素玲,陈超平,祁锋.关于伽玛函数的单调性质(英文)[J].大学数学,2006,22(4):50-55. 被引量:6
  • 5Keith Ball.Volumes of sections of cubes and related problem[J].Geometric Aspects of Functional Analysis,1989,1376:251-260.
  • 6Keith Ball.Ellipsoids of maximal volume in convex bodies[J].Geometriae Dedicata,1992,41(2):241-250.

二级参考文献10

  • 1Widder D V.The Laplace Transform[M].Princeton,Princeton Univ.Press:NJ,1941.
  • 2Qi Feng,Chen Chao-ping.A complete monotonicity property of the Gamma function[J].J.Math.Anal.Appl,2004,296(2):603-607.
  • 3Davis P J.Leonhard Euler's integral:A historical profile of the Gamma function[J].Amer.Math.monthly,1959,66(10):849-869.
  • 4Magnus W,Oberhettinger F,Soni R P.Formulas and Theorems for the Special Functions of Mathematical Physics[M].Berlin:Springer,1966.
  • 5Anderson G D,Qiu Song-liang.A monotonicity property of the Gamma function[J].Proc.Amer.Math.Soc,1997,125(11):3355-3362.
  • 6Anderson G D,Vamanamurthy M K,Vuorinen M.Inequalities for quasiconformal mappings in space[J].Pacific J.Math,1993,160(1):1-18.
  • 7Elezovic N,Giordano C,Pecaric J.The best bounds in Gautschi's inequality[J].Math.Inequal.Appl,2000,3(2):239-252.
  • 8Abramowitz M,Stegun I A (Eds).Handbook of Mathematical Functions with Formulas,Graphs,and Mathematical Tables[M].Washington:National Bureau of Standards,Applied Mathematics Series 55,(4th printing with corrections),1965.
  • 9Xu Xiao-ling,Wang Rong-hua,Fei He-liang.Some properties of Gamma function[J].J.Shanghai Teachers Univ,2000,29(2):17-23.
  • 10Sandor J.On a limit involving the Euler-Gamma function[J].Octogon Math.Mag,2004,11(1):262-264.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部