期刊文献+

水热法制备Fe_3O_4/rGO纳米复合物作为锂离子电池阳极材料 被引量:7

Hydrothermal Synthesis of Fe_3O_4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries
下载PDF
导出
摘要 以氢氧化铁为四氧化三铁的前驱体,氧化石墨烯(GO)为还原石墨烯(r/GO)的前驱体,以水合肼和二水合柠檬酸三钠为混合还原剂,采用水热法制备了还原石墨烯负载四氧化三铁纳米颗粒(Fe_3O_4/rGO)的复合材料。通过透射电子显微镜(TEM)、X-射线衍射(XRD)和热重分析(TGA)对产物的形貌、结构和组成进行了表征。以锂片为对电极进行了扣式电池的组装,通过恒电流充放电和循环伏安法对其电化学性能进行了测试。材料具有均一的形貌,r/GO具有较高的还原程度且可以在充放电过程中缓冲Fe_3O_4纳米颗粒的体积变化,使得Fe_3O_4/rGO纳米复合物具有较好的电化学性能。 Fe3O4/rGO nanocomposites were prepared by hydrothermal method using Fe(OH)3 as precursor of magnetite nanoparticles, graphene oxide (GO) as precursor of reduced graphene oxide (rGO), hydrazine and trisodium citrate as mixed reducing agent. The morphologies, structures and compositions of the products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The electrochemical characteristics of assembled coin-type cells versus metallic lithium were evaluated by cyclic voltammetry and galvanostatic charge-discharge. The uniform morphology, high reductive level of rGO and the role of rGO buffering the volume changes of Fe3O4 nanoparticles in the charging-discharging process can be responsible for the good electrochemical performance of Fe3O4/rGO nanocomposites.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第11期2737-2744,共8页 Acta Physico-Chimica Sinica
关键词 锂离子电池 纳米复合物 四氧化三铁 石墨烯 阳极材料 Lithium ion battery Nanocomposite Magnetite Graphene Anode material
  • 相关文献

参考文献40

  • 1Zhang, L.: Wu, H. B.; Lou, X. W. D..4d: Etwrg9 Mate1: 2014, 4 (4) 1032. doi: 10.1002/aenm.201300958.
  • 2Ji, L. W.: Lin, Z.: Alcoutlabi, M.; Zhang, X. W. Enelv Enviro. Sci. 201 I, 4 (8): 2682. doi: 10.1039/COEE00699H.
  • 3Yoshio, M.; Wang, H. Y.; Fukuda, K.; Hara, Y.: Adachi, Y. ,1. Electrochem. Soc. 2000, 147 (4): 1245. doi: 10.1149/1.1393344.
  • 4Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Nano Res. 2014, 7, 1. doi: 10.1007/s12274-013-0375-x.
  • 5Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. D. Nanoscale 2012, 4, 2526. doi: ! 0. 1039/C2NR 11966H.
  • 6Wu, Z. S.; Ren, W. C,; Wen, L.; Gao, L. B.; Zhao, J. R; Chela, Z P.; Zhou, G. M, Li, F.; Cheng, H. M. ACS Nano 2010, 4 (6): 3187. doi: 10. tO2 l/nn100740x.
  • 7Wang, lq.; Cui, L. F.; Yang, Y.; Sanchez Casalongue, H. S.;Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. d Am. hem. Soc. 2010, 132 (40): 13978. doi: 10.1021/ja105296a.
  • 8Feng, K.; Ahn, W.; Lui, G.; Park, H. W.; Kashkooli, A. G.; Jiang, G. P.; Wang, X. L.; Xiao, X. C.; Chen, Z. W. Nano Enel;g,y 2016, 19, 187. doi: 10.1016/j.nanoen.2015.10.025.
  • 9Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. E Electrochim. Acta 2011, 56 (5): 2306. doi: 10.1016/j.electacta.2010.11.036.
  • 10Bai, L.; gang, I.; Zhao, Y. Y.; Liu, Y. G.; Li, J. P.; Huang, G. Y.; Sun, H. Y. RSCAdv. 2014, 4 (81): 43039. doi: 10.1039/ C4RA04979A.

二级参考文献2

共引文献7

同被引文献72

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部