摘要
【目的】针对农用无人机作业时,对速度的稳定恒速需求,研究无人机无刷直流电机的速度控制模糊PI闭环算法。【方法】分析无人机电控系统的结构原理,根据电控系统驱动无刷直流电机的速度控制要求,在Matlab/Simulink环境下,构建电控驱动无刷直流电机系统的仿真模型,采用速度电流双闭环控制策略,其中,速度环使用模糊PI控制器,电流环使用电流滞环控制。设置系统参数,进行仿真分析,搭建ARM电路仿真板,验证算法的有效性。【结果】采用模糊PI后,该系统加快了速度响应,减少了系统超调量,提高了系统的抗干扰能力,提高了系统的动态特性和鲁棒性。【结论】本研究提出的模糊PI控制策略是有效的,可为无人机实际电机控制系统设计和调试提供理论参考。
【 Objective】 Fuzzy PI closed loop control algorithm was studied for constant speed demand in agricultural unmanned aerial vehicle ( UAV) operations.【Method 】The principle and structure of theUAV electrical control system was analyzed in this paper. According to the requirement of electrical con-trol system for brushless direct current motor (BLDCM) speed adjustment, the simulation model of BLD- CM control system was established in Matlab/Simulink software environment. Double closed loop controlof speed and current was applied with fuzzy PI speed control and current hysteresis control. Simulationanalysis was conducted with defined systematic parameters. The ARM circuit simulation board was builtto verify the effectiveness of the algorithm.【 Result】 Simulation results proved that the BLDCM control system had improved response speed, reduced overshoot, and higher anti-disturbance ccontrol. In addition,the dynamic behavior and robustness ability of the system were improved as well.【 Conclusion】 This study proves effectiveness of the fuzzy PI closed loop contriol algorithm and provides theoretical reference for real UAV control system design and debugging.
出处
《华南农业大学学报》
CAS
CSCD
北大核心
2016年第6期31-37,共7页
Journal of South China Agricultural University
基金
国家重点研发计划项目(2016YFD0200700)
广东省科技计划项目(2014A020208107
2015B050501009)