期刊文献+

基于噪声方差小波阈值去噪算法研究 被引量:2

Research on wavelet threshold de-noising algorithm based on noise variance
下载PDF
导出
摘要 为了克服小波阈值去噪中硬阈值小波系数不连续和软阈值估计小波系数与分解小波系数之间恒定偏差的缺点,改进的阈值去噪方法被相继提出。文章根据高斯白噪声和信号在小波变换以后得到的小波系数呈现不同的特性,基于噪声方差提出一种新算法。最后通过MATLAB仿真验证该算法在信噪比、均方根误差、相关系数、信噪比增益4个去噪指标的效果。 In order to overcome the disadvantages of wavelet-coefficient discontinuity in hard threshold and constant deviation between estimation of wavelet-coefficient and decomposition of wavelet-coefficient in soft threshold,many improved threshold de-noising schemes without the two disadvantages has been proposed. In this paper,we have achieved a novel algorithm based on noise variance by analyzing different characteristics of wavelet coefficient between Gauss white noise and signal after wavelet transform. The experimental results by MATLAB simulation show that the proposed algorithm has four de-noising indexes advantages in SNR,RMSE,correlation coefficients and SNR gain.
出处 《微型机与应用》 2016年第21期58-60,共3页 Microcomputer & Its Applications
关键词 小波阈值 小波变换 噪声方差 去噪指标 wavelet threshold wavelet transform noise variance de-noising index
  • 相关文献

参考文献1

二级参考文献74

  • 1Dragotti P L and Vetterli M. Wavelet footprints: theory,algorithms, and applications [J]. J. Amer. Statist. Assoc.,2003, 51(5): 1306-1323.
  • 2Johnstone I M and Silverman B W. Wavelet threshold estimators for data with correlated noise [J]. J. Royal Statistical Society B, 1997, 59(2): 319-351.
  • 3Jansen M and Bultheel A. Multiple wavelet threshold estimation bY generalized cross validation for data with correlated noise [J], IEEE Trans. on Image Proc,, 1999, 8(7):947-953.
  • 4Baduleseu P and Zaciu R. Removal of mixed-noise using order statistic filter and wavelet domain Wiener filter [A].Proceedings of the International Semiconductor Conference[C]. Sinaia Romania, 1999: 301-304.
  • 5Coifman R R and Donoho D L. Translation-invariant de-noising [A]. Wavelets in Statistics of Lecture Notes instatistics 103[C]. New York: Springer-Verlag, 1994:125-150.
  • 6Arne Kovac. Wavelet thresholding for unequally spaced data[D], Ph.D. Thesis, Faculty of Science, University of Bristol,1998.
  • 7Vanraes E, Jansen M, and Bultheel A. Stabilized wavelet transforms for non-equispaced data smoothing [J]. Signal Processing, 2002, 82(12): 1979-1990.
  • 8Malfait M and Roose D. Wavelet-based image denoising using a Markov random field a priori model [J]. IEEE Trans.on Imgae Proc., 1997, 6(4): 549-565.
  • 9Shark L K and Yu C. Denoising by optimal fuzzy thresholding in wavelet domain [J]. Electronics Letters, 2000,36(6): 581-582.
  • 10Mihcak M, Kozintsev I, and Ramchandran K, et al. Low-complexity image denoising based on statistical modeling of wavelet coefficients [J]. IEEE Signal Processing Lett., 1999,6(12): 300-303.

共引文献114

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部