期刊文献+

压电风扇振动方程和速度场的数值分析 被引量:1

Numerical analysis on piezoelectric fan vibration equation and velocity field
下载PDF
导出
摘要 通过ANSYS建立压电风扇的简化模型,对压电风扇进行模态分析,得出1阶模态下的共振频率为51.19 Hz;通过瞬态分析得出风扇上给定点的最大振动位移和振动特性,拟合出压电风扇处于最大位移时的振动曲线;得出压电风扇在整个工作过程的振动函数方程;通过此运动方程编写用户自定义函数(User-Defined Function,UDF)在FLUENT中计算出压电风扇周围最大速度为1.94m/s,沿流道长度方向上的速度约为0.73 m/s. A simplified model of piezoelectric fan is built and its modal analysis is done in ANSYS. It iscalculated that the resonant frequency of the first order mode is 51. 92 Hz. According to the transientanalysis, the maximum displacement and the vibration characteristics of the given nodes and thepiezoelectric fan are calculated, which are used to get the fitting curves of vibration when the piezoelectricfan is under maximum displacement. The vibration function equation of the piezoelectric fan is obtainedin the whole work process, by which a User-Defined Function( UDF) is programmed in FLUENT. By theUDF, it is calculated that the maximum velocity is 1. 94 m/s around the piezoelectric fan and theapproximate velocity is 0.73 m/s along the longitudinal direction.
出处 《计算机辅助工程》 2016年第5期32-35,40,共5页 Computer Aided Engineering
关键词 压电风扇 模态分析 位移测量 瞬态分析 振动方程 流场分析 piezoelectric fan modal analysis displacement measurement transient analysis vibrationequation flow field analysis
  • 相关文献

参考文献2

二级参考文献29

  • 1卫琳.便携式压电陶瓷微型定向风扇[J].压电与声光,1995,17(1):26-29. 被引量:2
  • 2Toda M. Theory of air flow generation by a resonant type PVF2 bimorph cantilever vibrator. Ferroelectrics, 1978, 22(1) : 911-918.
  • 3Ihara A, Watanabe H. On the flow around flexible plates oscillating with large amplitude. Journal of Fluids and Structure, 1994, 8(7): 601-619.
  • 4Acikalin T, Raman A, Garimella S V. Two-dimensional streaming flows induced by resonating thin beams. Journal of Acoustic Society of American, 2003, 114(4Ptl) : 1785- 1795.
  • 5Kim Y H, Wereley S T, Chun C H. Phase-resolved flow field produced by a vibrating cantilever plate between two endplates. Physics of Fluids, 2004, 16(1): 145-162.
  • 6Wait S M, Basak S, Garimella S V, et al. Piezoelectric fans using higher flexural modes for electronics cooling ap- plications. IEEE Transaction on Components and Packa- ging Technologies, 2005, 30(1): 119-128.
  • 7Kimber M, Suzuki K, Kitsunai N, et al. Pressure and flow rate performance of piezoelectric fans. IEEE Transac- tion on Components and Packaging Technologies, 2009, 32(4) : 766-775.
  • 8Yoo J H, Hong J I, Cao W. Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic de- vices. Sensors Actuators A: Physical, 2000, 79(1): 8-12.
  • 9Aciklain T, Wait S M, Garimella S V. Experimental in- vestigation of the thermal performance of piezoelectric fans. Heat Transfer Engineering, 2004, 25(1): 4-14.
  • 10Kimber M, Garimella S V, Raman A. Local heat transfer coefficients induced hy piezoelectrically actuated vibrating cantilevers. Journal of Heat Transfer, 2007, 129 (9): 1168-1176.

共引文献13

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部