期刊文献+

一类非线性高阶q-对称差分方程解的存在性

Existence of solutions for a class of nonlinear high order q-symmetric difference equations
下载PDF
导出
摘要 研究一类非线性高阶q-对称差分方程解的存在性,通过计算得出解的表达形式,利用Banach空间完全连续算子的不动点定理得出解的存在唯一性结果,应用Schaefer's不动点定理得出解的存在性。 We consider the existence of solutions for a class of nonlinear high order q-symmetric difference equations.The solution of BVP is acquired by calculating.We construct a Banach space and get the uniqueness of solution by making use of Banach space completely continuous operator's fixed theorem,and the existence of the solutions is obtained by using the Schaefer's fixed point theorem.The proofs of these results is based on Banach space completely continuous operator's fixed theorem and Schaefer's fixed point theorem.
机构地区 延边大学理学院
出处 《东北石油大学学报》 CAS 北大核心 2016年第5期114-122,共9页 Journal of Northeast Petroleum University
基金 国家自然科学基金项目(11161049)
关键词 q一对称差分方程 解的唯一性 不动点定理 解的存在性 q-symmetric difference uniqueness of solution fixed point theorem existence of solutions
  • 相关文献

参考文献2

二级参考文献16

  • 1El-Shabed M,Hassan H A.Positive solutions of q-difference equation[J].Proc Amer Math Soc,2010,138:1733-1738.
  • 2Yang Wengui.Anti-periodic boundary value problems involving nonlinear fractional q-difference equations[J].Malaya Journal of Matematik,2013,4(1):107-114.
  • 3Jackson F H.On q-funtions and a certain difference operator[J].Trans Roy Soc Edin,1908,46:253-281.
  • 4Jackson F H.On q-definite integrals[J].Quart J Pure and Appl Math,1910,41:193-203.
  • 5Strominger A.Information in black hole radiation[J].Phys Rer Lett,1993,71:3743-3746.
  • 6Youm D.q-Deformed conformal quantum mechanics[J].Phys Rev D,2000,62:095009.
  • 7Lavagno A,Swamy N P.q-Deformed structures and nonextensive statistics:a comparative study[J].Physica A:Statistical Mechanics&Its Applications,2002,305(1):310-315.
  • 8Boole G.Calculus of Finite Differences[M].New York:Chelsea Publishing Company,1957.
  • 9Ernst T.The different tongues of q-calculus[J].Proc Est Acad Sci,2008,57(2):8199.
  • 10Kac V,Cheung P.Quantum Calculus[M].New York:Springer,2002.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部