期刊文献+

负表约束的简单表缩减广泛弧相容算法 被引量:6

Simple Tabular Reduction for Generalized Arc Consistency on Negative Table Constraints
下载PDF
导出
摘要 广泛弧相容算法(generalized arc consistency,简称GAC),是求解约束满足问题的核心方法.表约束理论上可以表示所有约束关系,在过去10年中,有很多应用于表约束的广泛弧相容算法被提出来.在这些算法中,表缩减算法的效率非常高.但是目前的表缩减算法只能应用于正表约束,无法直接应用于负表约束.首先,提出一种表缩减算法STR-N,可以直接应用于负表约束;然后,给出了STR-N的两个改进版本STR-N2和STR-NIC.实验结果显示,STR-N算法在负表约束上的求解效率具有明显的优势. Generalized arc consistency (GAC) plays a central role in solving the constraint satisfaction problem. Table constraints can theoretically represent all kinds of constraint relations, and many algorithms have been proposed to establish GAC on table constraints in the past decade. Among these methods, the simple tabular reduction algorithms (STR) are very efficient. However, the existing STR algorithms are suitable for only positive table constraints. They can not directly work on negative table constraints. In this paper, a STR algorithm, called STR-N, is first proposed to directly work on negative table constraints. Then, two improved versions of STR-N, STR-N2 and STR-NIC are presented. Experimental results show that the STR-N algorithms bring improvements over CPU time while solving the instances with negative table constraints.
作者 李宏博 梁艳春 李占山 LI Hong-Bo LIANG Yan-Chun LI Zhan-Shan(College of Computer Science and Technology, Jilin University, Changchun 130012, China Key Laboratory of Symbolic Computation and Knowledge Engineering for the Ministry of Education (Jilin University), Changchun 130012, China)
出处 《软件学报》 EI CSCD 北大核心 2016年第11期2701-2711,共11页 Journal of Software
基金 国家自然科学基金(61472158 61272207) 吉林省科技计划(20140101200JC)~~
关键词 约束满足问题 广泛弧相容 简单表缩减 负表约束 constraint satisfaction problem generalized arc consistency simple tabular reduction negative table constraint
  • 相关文献

参考文献2

二级参考文献16

  • 1[1]Bacchus F, van B P. On the conversion between non-binary and binary constraint satisfaction problems. In: Proceedings of AAAI′98,Madison WI,1998. 311~318
  • 2[2]Dent M J, Mercer R E. Minimal forward checking. In: Proceedings of the 6th IEEE International Conference on Tools with Artificial Intelligence, New Orleans, LA,1994. 432~438
  • 3[3]Haralick R M, Elliot G L. Increasing tree seach efficiency for constraint satisfaction problems. Artificial Intelligence, 1980,14(3) :263~313
  • 4[4]Bessiere C, Meseguer P, Freuder E C, Larrosa J. On forward checking for non-binary constraint satisfaction. Artificial Intelligence, 2002, 141(1/2) :205~224
  • 5[5]Mohr R, Masini G. Good old discrete relaxation. In:Proceed-ings of ECAI′88, Munchen, FRG, 1988. 651~656
  • 6[6]Dechter R, Pearl J. Tree clustering for constraint networks.Artificial Intelligence, 1989, 38(3) :353~366
  • 7[7]Dechter R. On the expressiveness of networks with hidden variables. In: Proceedings of the 8th National Conference on Artificial Intelligence, Boston, Mass,1990. 556~562
  • 8[8]Rossi F, Petrie C, Dhar V. On the equivalence of constraint satisfaction problems. In: Proceedings of ECAI′ 90, Stockholm, Sweden, 1990. 550~556
  • 9[9]Larrosa J,Meseguer P. Adding constraint projections in n-ary csp. In: Proceedings of the ECAI′98 workshop on non-binary constraints, Brighton, UK, 1998. 41~48
  • 10[10]van H P. Constraint satisfaction in logic programming. Cambridge, MA:MIT Press, 1989

共引文献26

同被引文献8

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部