期刊文献+

二维Euler-α方程的解收敛到欧拉方程组的解的简单证明

A Simple Proof of the Solution of two Dimensional Euler-α Equations Converge to the Solution of Euler Equations
下载PDF
导出
摘要 令Euler-α方程的初始速度是欧拉方程极限的初速度的合适逼近。直接利用分部积分公式和插值不等式可证明得到,当α→0时,具Dirichlet边界条件的二维Euler-α方程组的解以L2空间及时间一致收敛于欧拉方程组的解。 Assume that the initial velocities for the Euler- α system approximate,in suitable sense,as the regularization parameter α → 0, the initial velocity for Euler system. Applying the interpolation inequalities and integration by parts, one can prove that the solutions of 2 D Euler- α in the Dirichlet converges to the one of Euler equations L2 in space and uniformly in time.
作者 臧爱彬 江碧霞 ZANG Ai - bin JIANG Bi - xia(School of Mathematics and Computer Science, Yichun University, Yichun 336000, Chin)
出处 《宜春学院学报》 2016年第9期5-8,32,共5页 Journal of Yichun University
基金 国家自然科学基金项目(11201411 11571279) 江西省教育厅科技项目(GJJ151036) 江西省普通本科高校中青年教师发展计划访问学者专项资金项目
关键词 Euler-α方程 欧拉方程 DIRICHLET边界条件 Euler-α equations Euler equations Dirichlet boundary conditions
  • 相关文献

参考文献12

  • 1J.Marsden,T.Ratiu,S.Shkoller,The geometry and analysis of the averaged Euler equations and a new diffeomorphism group[J].Geometry Function Analysis,2000,10:582-599.
  • 2S.Shkoller,Analysis on groups of diffeomorphisms of manifolds with boundary and the averaged motion of a fluid[J].Journal of Differential Geometry 2000,55:145-191.
  • 3D.Cioranescu,O.El Hacène,Existence and uniqueness for fluids of second grade,in:H.Brezis and J.L.Lions(Eds.)[M].Pitman Research Notesin Mathematics,Boston,1984,109:178-197.
  • 4A.V.Busuioc,On second grade fluids with vanishing viscosity[J].C.R.Acad.Sci.Paris I,1999,328:1241-1246.Also in Port.Math.(N.S.),2002,59(1):47-65.
  • 5T.Kato,C.Y.Lai,Nonlinear evolution equations and the Euler flow[J].Journal of Functional Analysis,1984,56:15-28.
  • 6R.Temam,On the Euler equations of incompressible perfect fluids[J].Journal of Functional Analysis,1975,20:32-43.
  • 7Milton C.Lopes Filho,Helena J.Nussenzveig Lopes,Edriss S.Titi,Aibin Zang,Convergence of the 2 D Euler-to Euler equations in the Dirichlet case:Indifference to boundary layers[J].Physica D.,2015,292-293:51-61.
  • 8Milton C.Lopes Filho,Helena J.Nussenzveig Lopes,Edriss S.Titi,Aibin Zang,Approximation of 2 D Euler Equations by the Second-Grede Fluid Equations with Dirichlet Boundary Conditions[J].Journal of Mathematical Fluid Mechanics,2005,17:327-340.
  • 9T.Kato,Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary[M].in:S.S.Chern(Ed.),Seminar on Nonlinear Partial Differential Differential Equations,Mathematical Sciences Research Institute Publications,New York,1984:85-98.
  • 10Lawrence C.Evans,Partial Differential Equations[M].American Mathematical Society,1998.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部