期刊文献+

基于光束平差法的双目视觉里程计研究 被引量:10

Research on binocular vision odometer based on bundle adjustment method
原文传递
导出
摘要 机器人自定位是实现机器人自动导航及其他智能行为的前提,一种基于光束平差法的移动机器人双目视觉里程计可以有效地实现机器人自定位.为此,首先采用点模式匹配方法建立相邻图像之间的特征匹配关系,根据立体视觉算法得到匹配点对的三维对应关系;然后,计算摄像机的相对运动参数,并采用光束平差分段优化算法对其进行优化.所提出的双目视觉里程计能够避免车轮半径变化、空转、打滑等对里程计测量精度的影响,相对定位精度较高. Self-localization is the premise of navigation and other intelligent behavior for mobile robot. This paper proposes a kind of binocular vision odometer based on the bundle adjustment method. The feature point set is matched based on the point pattern matching method, and the corresponding 3D coordinate is calculated through 3D reconstruction. Then,the relative motion parameter is optimized through segmenting the image sequence into several subsequences according to overlapped regions. The performance of the binocular vision odometer does not depend on the count of rotating shaft, so that the effect of wheel radius, idle running and wheel slipping on the measurement precision can be avoided, and the relative positioning accuracy is higher.
出处 《控制与决策》 EI CSCD 北大核心 2016年第11期1936-1944,共9页 Control and Decision
基金 国家863计划项目(2007AA04Z227)
关键词 移动机器人 双目视觉里程计 图像匹配 mobile robot binocular vision odometer image matching
  • 相关文献

参考文献32

  • 1Gyaourova A, Kamath C, Cheung S C. Block matching for object tracking[R]. Livermore CA: Lawrence Livermore National Laboratory, 2003.
  • 2Horn B, Schunck B. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1/2/3): 185-204.
  • 3Lucas B, Kanade T. An iterative image registration technique with an application to stereo vision[C]. Proc of Imaging Understanding Workshop. San Francisco, 1981: 121-130.
  • 4Campbell J, Sukthankar R, Nourbakhsh I. Techniques for evaluating optical flow for visual odometry in extreme terrain[C]. IEEE/RSJ Int Conf on Intelligent Robots and Systems. Pittsburgh, 2004, 4: 3704-3711.
  • 5Sanada A, Ishii K, Yagi T. Self-localization of omni-directional mobile robot using silicon retina based optical flow sensor[C]. World Automation Congress(WAC). Hukuoka, 2010: 1-6.
  • 6Song X, Seneviratne L, Althoefer K. A Kalman filter-integrated optical flow method for velocity sensing of mobile robots[J]. IEEE/ASME Trans on Mechatronics, 2011, 16 (3): 551-563.
  • 7Agrawal M, Konolige K. Rough terrain.
  • 8al odometry[DB/OL]. https: //www. researchgate. net /publication / 228958153 Rough terrain visual odometry. [8] Garcia-Garcia R, Sotelo M A, Parra I, et al. 3D visual odometry for road vehicles[J]. J of Intelligent & Robotic Systems, 2008, 51(1): 113-134.
  • 9Fang H, Yang M, Yang R Q, et al. Ground-texture-based localization for intelligent vehicles[J]. IEEE Trans on Intelligent Transportation Systems, 2009, 10(3): 463-468.
  • 10Comport A I, Malis E, Rives P. Real-time quadrifocal visual odometry[J]. Int J of Robotics Research, 2010, 29(2/3): 245-266.

同被引文献56

引证文献10

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部