期刊文献+

具有有界输入领航者的二阶非线性多智能体系统的协调跟踪 被引量:1

COORDINATED TRACKING OF SECOND-ORDER NONLINEAR MULTI-AGENT SYSTEMS WITH AN INPUT-BOUNDED LEADER
原文传递
导出
摘要 针对领航者的控制输入为非零但有界的情形,研究了具有本质非线性动态的二阶多智能体系统的协调跟踪问题.利用邻居智能体之间的相对状态信息,分别提出了具有静态和自适应控制增益的两种控制协议.针对静态控制协议情形,基于李雅普诺夫稳定性理论得到了多智能体系统的状态全局指数达到一致时控制增益所需满足的条件.此外,在自适应控制协议作用下,证明了多智能体系统不需要借助任何全局信息就可以实现协调跟踪.最后,仿真实例验证了所得理论结果的正确性. This paper considers the coordinated tracking problem for second-order multi-agent systems with inherent nonlinear dynamics. In particular, the leader's control input is nonzero but bounded. Based on the relative states between neighbor- ing agents, two distributed control protocols with, respectively, static and adaptive control gains are proposed. For the static control protocol, sufficient conditions on the control gains are obtained to ensure that the states of the followers exponentially approach the state of the leader by using a Lyapunov-based approach. For the adaptive control protocol, it is proved that the coordinated tracking problem can be solved without requiring any global information. Numerical examples are provided to demonstrate the effectiveness of our theoretical results.
作者 王平 贾英民
出处 《系统科学与数学》 CSCD 北大核心 2016年第9期1376-1387,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家“973”计划项目(2012CB821200,2012CB821201) 国家自然科学基金(61134005,61221061,61327807)资助课题
关键词 二阶多智能体系统 协调跟踪 本质非线性动态 自适应控制. Second-order multi-agent systems, coordinated tracking, inherent nonlinear dynamics, adaptive control.
  • 相关文献

参考文献15

  • 1Hu J P, Hong Y G. Leader-following coordination of multi-agent systems with coupling time delays. Physica A, 2007, 374(2): 853-863.
  • 2Zhu W, Cheng D Z. Leader-following consensus of second-order agents with multiple time-varying delays. Automatica, 2010, 46(12): 1994-1999.
  • 3Hong Y G, Chen G R, Bushnell L. Distributed observers design for leader-following control of multi-agent networks. Automatica, 2008, 44(3): 846-850.
  • 4Cao Y C, Ren W. Distributed coordinated tracking with reduced interaction via a variable struc- ture approach. IEEE Transactions on Automatic Control, 2012, 57(1): 33-48.
  • 5Qin J H, Zheng W X, Gao H J. Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology. Automatica, 2011, 47(6): 1983-1991.
  • 6Li S H Du H B, Lin X Z. Finite-time consensus algorithm for multi-agent systems with double- integrator dynamics. Automatica, 2011, 47(8): 1706-1712.
  • 7Sastry S. Nonlinear Systems: Analysis, Stability, and Control, New York: Springer-Verlag, 1999.
  • 8Yu W W, Chen G R, Cao M, et al. Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(3): 881-891.
  • 9Song Q, Cao J D, Yu W W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Systems & Control Letters, 2010, 59(9): 553-562.
  • 10Wen G G, Peng Z X, Rahmani A, et al. Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics. International Journal of Systems Science, 2013.

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部