期刊文献+

新型多级潮汐流人工湿地对黄金尾矿库闭库淋溶液中典型污染物的去除 被引量:1

Multistage Tidal Flow Constructed Wetlands for Gold Tailings Closed Library Leaching Solution of Typical Pollutants Removal Characteristics
下载PDF
导出
摘要 采用多级潮汐流流人工湿地(MSTF-CWs)对黄金尾矿库闭库淋溶液进行处理,选用砾石-沸石为组合填料,平均水力负荷为5.4 L/(m^2·d),运行方式为潮汐流(运行周期8 h)。实验结果表明,当进水COD和NH4^+-N、SCN-、CN_T的质量浓度平均分别为139.9 mg/L和101.3、45.47、0.83 mg/L时,对应出水平均为60.19 mg/L和21.52、8.74、0.046mg/L,平均去除率分别为43.34%和78.14%、64.2%、93.8%;与GB 8978-1996的一级标准相比,NH4^+-N、COD及CNT的达标率分别为40.1%、94.0%及100%。MSTF-CWs对NH4^+-N、COD、SCN-及CN_T的去除负荷分别为1.06、1.04、0.61、0.01 g/(m^3·d)。说明MSTF-CWs可以显著改善黄金尾矿库闭库淋溶液水质,并为尾矿库闭库淋溶液治理提供新途径。 A novel multi-stage tidal flow constructed wetlands (MSTF-CWs) was employed for treatment of gold mine tailing leachate. The MSTF-CWs was operated using tidal flow strategy (8 h for each cycle) and under the average hydraulic load of 5.4 L/(m2-d) and using gravel and zeolite act as medium. The results showed that, whenthe influent COD and mass concentration of NH4+-N, SCN CNr were 139.9 mg/L and 101.3, 45.47, 0.83 mg/L, respectively, the average effluent were 60.19 mg/L and 21.52, 8.74, 0.046 mg/L. The average removal efficiency was78.4%, 94.0%, 64.2% and 93.8%, respectively. Compared with the GB 8978 -- 1996 in the primary standards, NH4+-N, COD and CNT compliance rate was 40.1%, 94.0% and 100%. MSTF-CWs of NH4+-N, COD, SCN- and CNr removal load was 1.06, 1.04, 0.61, 0.01 g/(m3.d). MSTF-CWs can significantly improve the water quality of the gold tailings leachate. This offers a new approach for the gold mine tailing leachate treatment.
出处 《水处理技术》 CAS CSCD 北大核心 2016年第11期67-72,共6页 Technology of Water Treatment
基金 长春黄金研究院科研项目(2013229)
关键词 多级潮汐流人工湿地 黄金矿山 尾矿库闭库淋溶液 硫氰酸盐 氰化物 Multi-stage tidal flow wetlands gold mine tailing leachate thiocyanate cyanide
  • 相关文献

参考文献23

  • 1台明青,唐红雨,李祎,冯果,张少倩,王宁,裴举林.金矿废水和尾矿中氰化物的处理研究进展[J].中国资源综合利用,2007,25(2):22-25. 被引量:26
  • 2陈芳芳,张亦飞,薛光.黄金冶炼污染治理与废物资源化利用[J].黄金科学技术,2011,19(2):67-73. 被引量:15
  • 3D T Hill. Ammonia effects on the biomass production of five constructed wetland plant species[J].Bioresource Technology, 1997,62:109-113.
  • 4Robert L Knight. Constructed wetlands for livestock wastewater management[J] .Ecological Engineering,2000,15:41-55.
  • 5Ingo Bruch, Johannes Fritsche. Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands [J]. Bioresource Technology,2011,102:937-941.
  • 6Alexandros I. Effluent quality improement df two pilot-scale, horizontal subsurface flow constructed wetlands using natural zeolite (clinoptilolite)[J].Microporous and Mesoporous Materials, 2009,124:131-143.
  • 7Irini P Kotti, Georgios D. Effect of operational and design parameters on removal efficiency of p!lot-seale FWS constructed wetlands and comparison with HSF systems[J].Ecological Engineering,2010,36: 862-875.
  • 8Jana Majer Newman. Seasonal performance of a wetland constructed to process dairy milkhouse wastewater in Connecticut[J].Ecological Engineering,2000,14:181-198.
  • 9国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:156-290.
  • 10Kotti I P. Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetland and comparison with HSF systems[J].ecologieal engineering,2007,36(7):862-875.

二级参考文献115

共引文献649

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部