期刊文献+

基于进化势博弈的多无人机传感器网络K-覆盖 被引量:2

An evolutionary potential game theoretic approach for the K-COVER problem in multi-UAV sensor networks
原文传递
导出
摘要 针对多无人机传感器网络K-覆盖问题,提出了基于势博弈与Log-linear学习的分布式最优传感器配置方法.介绍了传感器最优配置的国内外研究现状,特别对基于进化势博弈理论的方法进行了详细的阐述.利用博弈理论对无人机分布式传感器配置问题进行建模,通过个体局部收益函数与全局性能函数的设计将问题构造成网络势博弈.提出了一种基于时变Log-linear学习的分布式求解方法,并利用非齐次马尔可夫链理论对收敛性与最优性进行了证明.仿真对比实验证明了所提算法的可行性、有效性和优越性. This paper focuses on the K-COVER problem in unmanned aerial vehicle (UAV) sensor networks and proposes a game theoretic approach based on the network potential game and Log-linear learning. After detailing the research progress at home and abroad, we firstly model the K-COVER problem in UAV networks as network potential game via appropriately designing of individual and global payoff functions. Secondly, a Log-linear learning based algorithm is proposed, whose convergence and optimality are proven using inhomogeneous Markov chain theory. Simulation results demonstrate the feasihlity, effectiveness, and superiority.
作者 孙昌浩 段海滨 SUN ChangHao DUAN HaiBin(Bio-inspired Autonomous Flight Systems Research Group, Science and Technology on Aircraft Control Laboratory, Beihang University Beijing 100191, China Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China)
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第10期1016-1023,共8页 Scientia Sinica(Technologica)
基金 国家自然科学基金重点项目(批准号:61333004)、国家自然科学基金面上项目(批准号:61273054)资助 国家杰出青年科学基金项目(批准号:61425008)
关键词 无人机 传感器网络 尽覆盖 势博弈 Log-linear 马尔可夫链理论 unmanned aerial vehicle (UAV), sensor network, K-COVER, evolutionary game theory, Log-learning, Markov chain
  • 相关文献

参考文献1

二级参考文献16

  • 1Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks. IEEE Communications Magazine, 2002, 40(8): 102-114.
  • 2Wang L, XiaoY. A survey of energy-efficient scheduling mechanisms in sensor networks. Mobile Networks and Applications, 2006, 11(5): 723-740.
  • 3Meguerdichian S, Koushanfar F, Potkonjak M, Srivastava M B. Coverage problems in wireless Ad-Hoc sensor network. In: Proceedings of the 20th International Annual Joint Conference of the IEEE Computer and Communications Societies. Anchorage, USA: IEEE, 2001. 1380-1387.
  • 4Slijepcevic S, Potkonjak M. Power efficient organization of wireless sensor networks. In: Proceedings of the IEEE Conference on Communications. Helsinki, Finland: IEEE, 2001. 472-476.
  • 5Tian D, Georganas N D. A coverage-preserving node scheduling scheme for large wireless sensor networks. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications. Atlanta, USA: ACM, 2002. 32-41.
  • 6Zhang H H, Hou J C. Maintaining sensing coverage and connectivity in large sensor networks. Ad-Hoc and Sensor Wireless Networks, 2005, 1(1-2): 89-124.
  • 7Keshavarzian A, Lee H, Venkatraman L. Wakeup scheduling in wireless sensor networks. In: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing. Florence, Italy: ACM, 2006. 322-333.
  • 8Wang B, Chua K C, Srinivasan V, Wang W. Information coverage in randomly deployed wireless sensor networks. IEEE Transactions on Wireless Communications, 2007, 6(8): 2994-3004.
  • 9Chakrabarty K, Iyengar S S, Qi H R, Cho E. Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transaztions on Computers, 2002, 51(12): 1448-1453.
  • 10Ye F, Zhong G, Lu S W, Zhang L X. PEAS: a robust energy conserving protocol for long-lived sensor networks. In: Proceedings of the 23rd International Conference on Distributed Computing Systems. Providence, USA: IEEE, 2003. 28-37.

共引文献9

同被引文献4

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部