摘要
通过推导椭圆线的菲涅耳衍射分布,得到了形如Pearcey函数的数学表达式.通过数值模拟和实验产生,发现椭圆光环经菲涅耳衍射后形成的Pearcey光束外形上很像两个经典Pearcey光束面对面组合而成,我们把它命名为双Pearcey光束,这是形式不变Pearcey光束家族的新成员.随后,利用数学突变理论,给出了双Pearcey光束所具有的光学拓扑结构的数学机理和相应表达式.
We present a theoretical expression in the form of the Pearcey function by deducing the Fresnel diffraction distribution of an elliptic line. Then, we numerically simulate and experimentally generate this kind of new Pearcey beams by using the Fresnel diffraction of optical ellipse line. This kind of beams can be referred to as Bi-Pearcey beams because their appearance of the topological structure is very similar to the combination of two face-to-face classical Pearcey beams. It is no doubt that so-called Bi-Pearcey beams are the new member of a family of form-invariant Pearcey beams.Subsequently, we also provide the theoretical mechanism of generating Bi-Pearcey beams based on the Zeeman catastrophe machine of catastrophic theory. By solving the critical equation of potential function of Bi-Pearcey beams generated by an ellipse line, we find that the optical morphogenesis of Bi-Pearcey beams is determined by the number of roots of the critical equation. The critical equation of potential function of Bi-Pearcey beams is a classical Cartan equation,which has at most three real roots. For the Fresnel diffraction of ellipse line, three real roots of the critical equation are corresponding to three stable points and represent three diffraction lines, hence they can be used to examine the optical topological structure of Bi-Pearcey beams. By choosing the appropriate control variable of Bi-Pearcey beams, two diffraction lines of an ellipse line overlap, and the strong caustic line of Bi-Pearcey beams is correspondingly generated when the two of the three real roots of the critical equation are equal. If the three real roots of the critical equation are all equal, the strongest cusps of Bi-Pearcey beams are generated, accordingly. Moreover, the equation of the caustic line and their positions of four cusps of Bi-Pearcey beams are given by solving the control variable equation of Bi-Pearcey beams. In conclusion, we elucidate the mathematical mechanism of topical morphogenesis of Bi-Pearcey beams based on catastrophic theory.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2016年第21期181-186,共6页
Acta Physica Sinica
基金
国家自然科学基金(批准号:11274278,11674288)资助的课题~~