期刊文献+

湿地植物-沉积物微生物燃料电池阳极微生物群落多样性研究 被引量:13

Phylogenetic diversity of bacterial and archaeal communities in anode biofilm of sediment microbial fuel cells
原文传递
导出
摘要 阳极微生物种类及群落结构都会对微生物燃料电池的产电及底泥修复效果产生显著影响,因此,对微生物燃料电池阳极微生物群落多样性进行研究分析显得尤为重要.本研究利用风车草(Clinopodium Urticifolium)或短叶茳芏(Cyperus Malaccensis)两种植物结合受污染河涌底泥构建了湿地植物-沉积物微生物燃料电池(P-SMFC),同时构建无植物的沉积物微生物燃料电池(SMFC)作为对照,共3个电极处理组,每组3个平行.系统运行7个月后,分析其产电特性,并利用高通量测序对3个电极处理组生物膜微生物群落多样性进行分析,以探讨P-SMFC产电特性、阳极生物膜群落多样性及不同处理组之间群落结构的差异.结果表明,3个处理组中微生物群落结构存在明显差异,风车草和短叶茳芏两种植物的引入均会对微生物燃料电池系统中的细菌及古菌群落结构产生影响.植物的存在一方面有助于阳极生物膜各类细菌及古菌的生长,另一方面植物也有助于产电系统中阳极生物膜细菌及古菌群落多样性的增加,且风车草相比短叶茳芏而言,更能增加系统的古菌群落的多样性.在细菌群落分析中,3个处理组中都以变形菌门Proteobacteria为优势菌群,其次为绿弯菌门Chloroflexi,在所有菌属中以土杆菌属Geobacter的相对丰度最高,分别为PSM1处理组11.50%、SM处理组14.33%、PSM2处理组8.53%,为其优势菌属,但P-SMFC中该菌属的丰度相对较低.在古菌群落分析中,3个处理组中都以广古菌门Euryarchaeota的相对丰度最高,分别为PSM1处理组79.83%、SM处理组80.20%、PSM2处理组81.67%,成为优势菌门,其中以甲烷八叠球菌目Methanosarcinales的Methanosaeta属、甲烷杆菌目Methanobacteriales的Candidatus Methanoregula属的相对丰度最高,为其优势菌属.且Methanosaeta的相对丰度分别达到PSM1处理组21.43%、SM处理组25.00%、PSM2处理组23.16%,P-SMFC处理组的丰度相对较低;Candidatus Methanoregula的相对丰度分别为PSM1处理组13.05%、SM处理组11.73%、PSM2处理组16.02%,P-SMFC处理组的丰度相对较高. Anodic microbes and microbial community structure exert a significant impact on electricity performance and sediment remediation application of microbial fuel cells,so the study on the anode microbial community diversity of microbial fuel cells is necessary. In this study,Clinopodium Urticifolium or Cyperus Malaccensis combined with sediments from a polluted urban river,two wetland plant- sediment microbial fuel cells( P-SMFC s) and one sediment microbial fuel cell( SMFC) were constructed with 3 replicates. The parameters of electricity generation were recorded and analyzed. After sevenmonths of operation,the microbial diversity of anode biofilm using high-throughput sequencing was analyzed. The results show the introduction of plants has strong influence to the bacteria and archaea community structure in microbial fuel cell systems. Compared to the short-leaf Cyperus malaccensis,Clinopodium urticifolium is more efficient in increasing the community diversity of archaea. The analysis of bacterial community shows the dominant bacteria group in all three treatment systems is Proteobacteria with the Geobacter as dominant genus,followed by Chloroflexi. In archaea analysis,all three treatment systems show the dominant Euryarchaeota. The dominant genera appeared to be Methanosaeta and Candidatus Methanoregula.
出处 《环境科学学报》 CAS CSCD 北大核心 2016年第11期4017-4024,共8页 Acta Scientiae Circumstantiae
基金 广州市科技计划项目(No.2014J4100020) 国家自然科学基金面上项目(No.31272482)~~
关键词 湿地植物 沉积物微生物燃料电池 阳极 细菌 高通量测序 wetland plant sediment microbial fuel fells(SMFCs) anode bacteria high throughput sequencing
  • 相关文献

参考文献17

  • 1Aeltemlan P, Rabaey K, Pham H T, et al. 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[ J ] .Environmental Science & Technology ,40(10) : 3388-3394.
  • 2Basumatary B, Bordoloi S, Sarma H P. 2012. Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius ( Rottb. ) Hassk [ J ]. Water, Air, & Soil Pollution, 223 (6) : 3373-3383.
  • 3Bombelli P, Iyer D M R, Covshoff S, et al. 2013. Comparison of power output by rice ( Oryza sativa) and an associated weed ( Echinochloa glabrescens) in vascular plant bio-photovoltaie (VP-BPV) systems [ J ] .Applied Microbiology and Biotechnology, 97 ( 1 ) : 429-438.
  • 4Chen Z, Huang Y, Liang J, et al. 2012. A novel sediment microbial fuel cell with a bioeathode in the rice rhizosphcre [ J ]. Bioresource Technology, 108 : 55-59.
  • 5Esteve Nuaez A, Reija A, Moreno Garzrn F, et al. 2009. Harvesting bioelectricity from natural environments : microbial fuel cell fuelled by rice plants [ J ].New Biotechnology,25 : S280.
  • 6De Schamphelaire L, Cabezas A, Marzorati M, et al. 2010. Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants [ J ]. Applied and Environmental Microbiology,76(6) : 2002-2008.
  • 7Hubenova Y, Mitov M.2012.Conversion of solar energy into electricity by using duckweed in direct photosynthetic plant fuel cell [ J ]. Bioelectrochemistry, 87 : 185-191.
  • 8Kaku N, Yonezawa N, Kodama Y, et al. 2005. Plant/microbe cooperation for electricity generation in a rice paddy field [ J ]. Applied Microbiology and Biotechnologv,79( 1 ) : 43-49.
  • 9刘士哲,林东教,唐淑军,罗健.利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究[J].应用生态学报,2004,15(7):1261-1265. 被引量:54
  • 10Petitjean C, Deschamps P, Lepez Garcia P, et al. 2015.Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota [ J ]. Genome Biology and Evolution, 7 ( 1 ) : 191-204.

二级参考文献9

共引文献53

同被引文献146

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部