期刊文献+

基于灰度差分和脊线检测算子的虹膜裂缝检测 被引量:7

Iris cracks detection based on gray level difference and ridge line detection operator
下载PDF
导出
摘要 虹膜裂缝是用于虹膜识别的特定形状虹膜纹理之一。为了解决在复杂背景下提取裂缝特征的问题,在对虹膜裂缝特征进行分析的基础上,提出了一种虹膜裂缝检测方法。首先用灰度差分模板得到裂缝纹理候选区域,并根据裂缝的先验知识筛选裂缝候选像素,在原图上分割成小区域;其次,采用脊线检测算子在小区域范围内对各种纹理进行检测;最后在二值化图像上计算该区域能量密度,排除非裂缝纹理,实现裂缝纹理的检测。该方法在图库中人工标定的1 201处裂缝中检测正确检出率达到94.09%。实验结果表明,本文方法在不需要手动去掉卷缩轮内区域的情况下,能够在多种虹膜纹理并存的复杂背景下检测出虹膜裂缝纹理。 Iris crack is one of the specific shape iris textures that can be used in iris recognition.In order to solve the problem of how to extract the iris crack characteristics in complex background,an iris crack texture detection method is presented in this paper on the basis of analyzing the iris crack characteristics.Firstly,the gray level difference template is used to obtain the candidate crack texture region, then the candidate crack pixels are screened out according to the prior knowledge of the cracks.The original image is divided into small blocks.Then,the ridge line detection operator is used to detect various textures in the small blocks.Finally,the energy densities of the blocks on the binarized image are calculated;the non-crack textures are eliminated,and the crack textures are detected.The method was used to detect the 1 201 cracks that were artificially marked in the image gallery;and the detection accuracy is 94.09%.The experiment results show that without artificially removing the collarette region,the proposed method can detect the iris crack textures from the visible iris image with complex background and multiple texture coexisting.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第10期2290-2299,共10页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61271365)项目资助
关键词 虹膜裂缝 灰度差分 脊线检测算子 能量密度 iris crack gray level difference ridge line detection operator energy density
  • 相关文献

参考文献21

  • 1BOWYER K W, HOLL1NGSWORTH K P, FLYNN P J. A survey of iris biometrics research: 2008-2010 [ M]. Springer London : Handbook of Iris Recognition, 2013 : 15-54.
  • 2DAUGMAN J. How iris recognition works [ J ]. IEEE Transactions on Circuits and Systems for Video Technology,2004,14 ( 1 ) : 21-30.
  • 3BOLES W, BOASHASH B. A human identification technique using images of the iris and wavelet transform[ J ]. IEEE Transactions on Signal Processing, 1998,46 (4) : 1185-1188.
  • 4WILDES R P. Iris recognition: An emerging biometric technology [ J ]. Proceedings of the IEEE, 1997,85 ( 9 ) : 1348-1363.
  • 5李欢利,郭立红,王心醉,李小明,董月芳,方艳超.基于加权Gabor滤波器的虹膜识别[J].吉林大学学报(工学版),2014,44(1):196-202. 被引量:14
  • 6苑玮琦,赵彦明,张志佳.基于纹理分布特征的虹膜识别算法[J].仪器仪表学报,2010,31(2):365-370. 被引量:13
  • 7苑玮琦,刘博.基于空域与频域稳定特征融合的离焦虹膜识别[J].仪器仪表学报,2013,34(10):2300-2308. 被引量:10
  • 8SHEN F, FLYNN P J. Are iris crypts useful in identity recognition [ C ]. IEEE Sixth International Conference on Biometrics : Theory, Applications and Systems ( BTAS ), 2013: 1-6.
  • 9HOSSEINI M S, ARAABIBN, SOLTANIAN-ZADEH H. Pigment melanin: pattern for iris recognition [ J ]. IEEE Transactions on Instrumentation and Measurement,2010, 59 (4) : 792-804.
  • 10SUNDER M S, ROSS A. Iris image retrieval based on macro-features[ C ]. 20th IEEE International Conference on Pattern Recognition (ICPR) ,2010: 1318-1321.

二级参考文献160

共引文献68

同被引文献49

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部