摘要
根据半驯服Euler法讨论了具有Markov调制的随机年龄结构种群系统的数值解.在非局部Lipschitz条件下,利用Burkholder-Davis-Gundy不等式、Ito公式和Gronwall引理,证明了半驯服Euler数值解不仅强收敛阶数为0.5,而且这种方法在时间步长一定的条件下有很好的均方指数稳定性.最后通过数值例子对所给的结论进行了验证.
In this paper, the semi-tamed Euler scheme for the stochastic age-dependent population system with Markovian switching is discussed. Under the non-local Lipschitz condition, by using Burkholder-Davis-Gundy inequality, Ito formula and Gronwall lemma, it is shown that the semi-tamed Euler method converges strongly with the standard order one- half to the exact solution. The authors also reveal that the scheme does have an advantage in reproducing the mean square stability of the exact solution with fixed stepsizes. A numerical example is provided to illustrate the theoretical results.
作者
杨洪福
张启敏
YANG Hongfu ZHANG Qimin(School of Mathematics and Information Science, Beifang University of Nation- alities, Yinchuan 750021, China. 2Corresponding author. School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China.)
出处
《数学年刊(A辑)》
CSCD
北大核心
2016年第1期71-88,共18页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11461053
No.11261043)的资助