期刊文献+

具有Markov调制的随机年龄结构种群系统半驯服Euler法的指数稳定性 被引量:2

Exponential Stability of the Semi-tamed Euler Scheme for the Stochastic Age-Dependent Population System with Markov Switching
下载PDF
导出
摘要 根据半驯服Euler法讨论了具有Markov调制的随机年龄结构种群系统的数值解.在非局部Lipschitz条件下,利用Burkholder-Davis-Gundy不等式、Ito公式和Gronwall引理,证明了半驯服Euler数值解不仅强收敛阶数为0.5,而且这种方法在时间步长一定的条件下有很好的均方指数稳定性.最后通过数值例子对所给的结论进行了验证. In this paper, the semi-tamed Euler scheme for the stochastic age-dependent population system with Markovian switching is discussed. Under the non-local Lipschitz condition, by using Burkholder-Davis-Gundy inequality, Ito formula and Gronwall lemma, it is shown that the semi-tamed Euler method converges strongly with the standard order one- half to the exact solution. The authors also reveal that the scheme does have an advantage in reproducing the mean square stability of the exact solution with fixed stepsizes. A numerical example is provided to illustrate the theoretical results.
作者 杨洪福 张启敏 YANG Hongfu ZHANG Qimin(School of Mathematics and Information Science, Beifang University of Nation- alities, Yinchuan 750021, China. 2Corresponding author. School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China.)
出处 《数学年刊(A辑)》 CSCD 北大核心 2016年第1期71-88,共18页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11461053 No.11261043)的资助
关键词 随机年龄结构种群系统 均方稳定 半驯服Euler法 非局部Lipschitz条件 Markov链 Stochastic age-dependent population system, Mean square-sta-bility, Semi-tamed Euler scheme, Non-local Lipschitz condition,Markov chain
  • 相关文献

参考文献19

  • 1Yang Z, Yin G, Li H. Stability of numerical methods for jump diffusions and Markovian swithching jump diffusions [J]. J Comput Appl Math, 2015, 275:197-212.
  • 2Zhang Q, Liu Y, Li X. Strong convergence of split-step backward Euler method for stochastic age-dependent capital system with Markovian switching [J]. Appl Math Corn- put, 2014, 235:439-453.
  • 3Mao X, Shen Y, Yuan C. Almost surely asymptotic stability of neutral stochastic dif- ferential delay equations with Markovian switching [J]. Stoch Proce Their Appl, 2008, 118:1385-1406.
  • 4Ma W, Zhang Q, Wang Z. Asymptotic stability of stochastic age-dependent population equations with Markovian switching [J]. Appl Math Comput, 2014, 227:309-319.
  • 5Li R, Pang W, Leung P. Convergence of numerical solutions to stochastic age-structured population system with diffusions and Markovian switching [J]. Appl Math Comput, 2010, 216:744-752.
  • 6Li R, Leung P, Pang W. Convergence of numerical solutions to stochastic age-dependent population equations with Markovian switching [J]. J Comput Appl Math, 2009, 216:744-752.
  • 7Ma W, Zhang Q. Convergence of the semi-implicit Euler method for stochastic age- dependent population equations with Markovian switching [M]. Information Computing and Applications, Heidelberg: Springer Berlin, 2010, 407-414.
  • 8Rathinasamy A. Split-step θ-method for stochastic age-dependent population equations with Markovian switching [J]. Nonlinear Anal: Real World Applications, 2012, 13:1334- 1345.
  • 9李荣华,戴永红,孟红兵.与年龄相关的随机时滞种群方程的指数稳定性[J].数学年刊(A辑),2006,27(1):39-52. 被引量:25
  • 10Peng W, Li R, Liu M. Convergence of semi-implicit Euler method for stochastic age- dependent equations [J]. Appl Math Comput, 2008, 195:466-474.

二级参考文献43

  • 1李荣华,戴永红,孟红兵.与年龄相关的随机时滞种群方程的指数稳定性[J].数学年刊(A辑),2006,27(1):39-52. 被引量:25
  • 2Metz J A J, Diekmann O. The dynamics of physiologically structured populations [M]. Berlin: Springer-Verlag, 1986.
  • 3Webb G F. Theory of nonlinear age-dependent population dynamics [M]. New York: Marcell Dekker, 1985.
  • 4Greiner G. A typical Perron-Frobenius theorem with applications to an age-dependent population equation [M]//Kappel F, Schappacher W (eds). Infinite-Dimensional Systems, (Retzhof, 1983), Lecture Notes in Math. 1076, Berlin: Springer-Verlag, 1984:86- 100.
  • 5Auslaader D M, Oster G F, Huffaker C B. Dynamics of interacting populations [J]. J Frank Inst. 1974. 297:345-376.
  • 6Piazzera S. An age-dependent population equation with delayed birth process [J]. Math Methods Appl Sci, 2004, 27(4):427-439.
  • 7Piazzera S, Tonetto L. Asynchronous exponential growth for an age dependent population equation with delayed birth process [J]. J Evol Equ, 2005, 5:61-77.
  • 8Cushing J M. The dynamics of hierarchical age-structured populations [J]. J Math Biol, 1994, 32:705-729.
  • 9Henson S M, Cushing J M. Hierarchical models of intra-specific competition: scramble versus contest [J]. J Math Biol, 1996, 34:755-772.
  • 10Fragnelti G. A population equation with diffusion [J]. J Math Anal Appl, 2004, 289:90- 99.

共引文献24

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部