摘要
设F是在区域D内的一族亚纯函数,其零点重级至少为k,k是一个正整数,a(z)(≠0)在区域D内全纯.若对于任意的f∈F,有(1)f(z)与a(z)没有公共的零点;(2)f(z)=0f(k)(z)=a(z)■0<|f^((k+1))(z)-a'(x)|<|a(z)|,则F在D内正规.
Let F be a family of meromorphic functions in a domain D, all of whose zeros have multiplicity at least k with k being a positive integer, and a(z) (5 0) be a holomorphic function in D. If, for each f∈F (1)f(z) and a(z)have no common zeros;(2)f(z)=0 f(k)(z)=a(z)■0〈|f^((k+1))(z)-a'(x)|〈|a(z)|,then F is normal in D.
作者
李三华
LI Sanhua(College of Mathematical and Physical Sciences, Jinggangshan University, Jian 343009, Jiangxi, China.)
出处
《数学年刊(A辑)》
CSCD
北大核心
2016年第1期89-96,共8页
Chinese Annals of Mathematics
基金
吉安市科技支撑项目(No.[2015]10号13)的资助
关键词
亚纯函数
零点
正规族
Meromorphic function, Zero point, Normality