期刊文献+

一种基于眼动的网购商品推荐方法

An Approach to Online Commodity Recommendation Based on Eye Movements
原文传递
导出
摘要 为了解决电子商务推荐系统的"冷启动"问题,帮助消费者快速有效地找到所需商品,提出一种基于眼动的网购商品推荐方法。首先,该方法将眼动作为一种隐式评分信息,用来说明消费者意图需求的高层语义;其次,提取商品图像的底层视觉特征,用于描述商品的特征属性;最后,使用排序支持向量机算法搭建商品特征属性与消费者意图需求之间的语义"桥梁"。实验结果表明,该推荐方法能够对原始的推荐结果进行重排序,有效地将消费者所需商品排在推荐结果的前列。 To solve the cold-start problem of E-Commerce Recommender System, this paper proposes an approach to online commodity recommendation based on eye movements to help consumers quickly and effectively find what they want during online shopping. This paper begins with taking eye movements as a kind of implicit rating information to explain high-level semantic concept of consumers' needs. Next, our proposed approach extracts low-level visual features of commodity images to describe their feature attribute. Finally, we use ranking support vector machine algorithm to bridge the gap between the feature attribute of merchandises and consumers' needs. The results of experiments indicate that the proposed method can reorder the original recommendation results, and merchandises preferred by consumers are the top few ones of the recommendation results.
作者 胡文婷 周献中 朱美琳 王友发 朱咸军 HU Wen-ting ZHOU Xian-zhong ZHU Mei-lin WANG You-fa ZHU Xian-jun(School of Management and Engineering,Nanjing University,Nanjing 210093 School of Business, Xi'an International Studies University, Xi'an 710128, China)
出处 《系统工程》 CSSCI CSCD 北大核心 2016年第8期143-148,共6页 Systems Engineering
基金 国家自然科学基金资助项目(71171107) 江苏省普通高校研究生科研创新计划项目(KYZZ_0042)
关键词 商品推荐 眼动 视觉特征 排序支持向量机 Commodity Recommendation Eye Movements Visual Features Ranking Support Vector Machine
  • 相关文献

参考文献16

  • 1Adomavicius G, Tuzhilin A. Towards the next gene- ration of recommender systems: A survey of the state-of-the-art and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6) : 734-749.
  • 2金淳,张一平.基于Agent的顾客行为及个性化推荐仿真模型[J].系统工程理论与实践,2013,33(2):463-472. 被引量:25
  • 3陈冬林,聂规划,刘平峰.基于网页语义相似性的商品隐性评分算法[J].系统工程理论与实践,2006,26(11):98-102. 被引量:8
  • 4Ajanki A, et al. Can eyes reveal interest? Implicit queries from gaze patterns [J]. User Modeling and User-Adapted Interaction, 2009,19 (4) : 307 - 339.
  • 5Maseiocehi C M, et al. Everyone knows what is in- teresting: Salient locations which should be fixated [J ]. Journal of Vision, 2009,9 (11) : 25.
  • 6Bednarik R. Expertise-dependent visual attention strategies develop over time during debugging with multiple code representations [ J ]. International Journal of Human-Computer Studies, 2012,70 (2) :143-155.
  • 7Maglio P P, Campbell C S. Attentive agents[J]. Communications of the ACM, 2003,46 (3) : 47 - 51.
  • 8Gidl6f K,et al.Using eye tracking to trace a cognitive process: Gaze behaviour during decision making in a natural environment[J]. Journal of Eye Movement Research,2013,6 (1) : 1-14.
  • 9Lin Y, et al. A fuzzy logics clustering approach to computing human attention allocation using eyegaze movement cue[J]. International Journal of Human- Computer Studies,2009,67(5) :455-463.
  • 10朱韶平,夏利民,彭东亮.基于图像和GM-PLSA模型的物品推荐方法[J].系统工程,2013,31(12):109-115. 被引量:2

二级参考文献70

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部