摘要
针对基于最小二来准则的传统灰色预测模型的参数辨识稳健性较差,甚至会出现病态性问题,提出了基于最小一乘准则的参数辨识方法,并给出了求解该参数的简便算法。最后通过实例说明,与最小二乘准则比较,基于最小一来准则的各类灰色预测模型能够有效降低异常值的干扰,弥补最小二乘法的不足,提高了各类灰色预测模型的适用性。
The parameter identification in classical grey models based on least square regression lacks robustness and often exists ill-conditioned problems. We extend grey prediction models with least absolute deviation criteria and give a simple algorithm of parameter identification. Compared with the least square regression method,the results show that the models based on least absolute deviation regression can reduce the interference of outliers, improve the robustness and exhibit wide adaptability.
作者
康宁
荆科
KANG Ning JING Ke(School of Management, Hefei University of Technology, Hefei 230009,China School of Eeonomic,Fuyang Teachers College, Fuyang 236037,China)
出处
《系统工程》
CSSCI
CSCD
北大核心
2016年第8期149-153,共5页
Systems Engineering
基金
国家自然科学基金面上项目(71371062)
教育部人文社会科学研究规划项目(14YJA790015)
安徽省经济学特色专业(2014tszy021)
安徽省名师工作室(2014msgzs153)
关键词
最小一乘
最小二乘
参数辨识
灰色预测模型
MONTE
CARLO模拟
Least Absolute Deviation
Least Squares
Parameter Identifications Grey Prediction Models Monte Carlo Simulation