期刊文献+

限制葡萄糖、葡萄糖/乙酸双底物条件下自由控制丙丁梭菌ABE发酵丙酮浓度和丙酮/丁醇比 被引量:1

Control of Acetone Concentration and Acetone/Butanol Ratio in ABE Fermentation by C. acetobutylicum with a Novel Glucose/Acetate Co-substrate System Incorporating Glucose Limitation
原文传递
导出
摘要 提出一种可以提高和自由控制丙丁梭菌ABE发酵丙酮浓度与丙酮/丁醇比的方法。(1)通过控制糖化酶用量、反应时间和温度调节玉米培养基初始葡萄糖浓度,使发酵进入到产溶剂期后,残留葡萄糖浓度降至接近于0 g/L的水平;(2)在葡萄糖受限的条件下,诱导丙丁梭菌合成分泌糖化酶,分解寡糖,将葡萄糖维持于低浓度,进而限制梭菌胞内糖酵解途径的碳代谢和NADH生成速度。与此同时,外添乙酸形成葡萄糖/乙酸双底物环境。在能量代谢基本不受破坏、丁醇未达到抑制浓度的条件下,适度抑制丁醇生产,有效地利用外添乙酸强化丙酮合成;(3)在外添乙酸的基础上,添加适量酿酒酵母,形成丙丁梭菌/酿酒酵母混合发酵体系,提高梭菌对高丁醇浓度的耐受能力。整个发酵体系可以将丙酮浓度和丙酮/丁醇比自由控制在5~12 g/L和0.5~1.0的水平,最大丙酮浓度和丙酮/丁醇比达到11.74 g/L和1.02,并可维持丁醇浓度于10~14 g/L的正常水平,充分满足工业ABE发酵对于丙酮和丁醇产品的不同需求。 A novel strategy for arbitrarily controlling acetone concentration and acetone / butanol ratio in ABE fermentation by C. acetobutylicum was proposed. With this strategy,( 1) the residual glucose concentration could reduce to low level close to 0 g / L when ABE fermentation enters the solventogenic phase,by adaptively controlling the initial glucose concentration in the corn-based medium via glucoamylase usage dose,reaction time and temperature regulation;( 2) Under the condition of glucose limitation,C. acetobutylicum has the ability to release more glucoamylase for its survival and the secreted glucoamylase could continuously hydrolyze oligosaccharide to maintain glucose at low concentration,and therefore repress the metabolism or synthesis rates of glycolysis and NADH in C. acetobutylicum. At the same time,exogenous addition of acetate creates a glucose /acetate co-substrate environment. The co-substrate system would not deteriorate the energy metabolisms in ABE fermentation,but could adaptively repress butanol synthesis avoiding the early occurrence of butanol inhibition and enhance bio-acetone synthesis by effectively utilizing the exogenously added acetate;( 3) On the top of exogenous acetate addition,adaptively adding certain amount of viable S. cerevisiae to form C. acetobutylicum / S.cerevisiae co-culturing system, would enhance C. acetobutylicum tolerant ability against higher butanol concentration environment. The entire system could arbitrarily control acetone concentration and acetone / butanol ratio in the ranges of 5 ~ 12 g / L and 0. 5 ~ 1. 0,their maximum values could reach levels of 11. 74 g / L and1. 02,while maintaining butanol concentration within normal range of 10 ~ 14 g / L, to satisfy different requirements on acetone and butanol products in industrial ABE fermentation.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2016年第10期60-71,共12页 China Biotechnology
基金 国家自然科学基金(#20976072)资助项目
关键词 丙酮丁醇梭菌 丙酮生物合成 葡萄糖 乙酸 ABE发酵 Clostridium acetobutylicum Bio-acetone synthesis Glucose Acetate ABE fermentation
  • 相关文献

参考文献23

  • 1顾阳,蒋宇,吴辉,刘旭东,李治林,李键,肖晗,沈兆兵,赵静波,杨蕴刘,姜卫红,杨晟.生物丁醇制造技术现状和展望[J].生物工程学报,2010,26(7):914-923. 被引量:39
  • 2Wu H,Nithyanandan K,Zhang J,et al.Impacts of acetonebutanol-ethanol(ABE)ratio on spray and combustion characteristics of ABE-diesel blends.Applied Energy,2015,149:367-378.
  • 3Wu H,Nithyanandan K,Zhou N,et al.Impacts of acetone on the spray combustion of acetone-butanol-ethanol(ABE)-diesel blends under low ambient temperature.Fuel,2015,142:109-116.
  • 4Xue C,Zhao X Q,Liu C G,et al.Prospective and development of butanol as an advanced biofuel.Biotechnology Advances,2013,31(8):1575-1584.
  • 5Jang Y S,Lee J Y,Lee J,et al.Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum.MBio,2012,3(5):e00314-12.
  • 6Jiang Y,Xu C,Dong F,et al.Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio.Metabolic Engineering,2009,11(4):284-291.
  • 7Wang S,Zhu Y,Zhang Y,et al.Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis,thus increasing solvent productivity.Applied Microbiology and Biotechnology,2012,93(3):1021-1030.
  • 8Zhou J,Zhang H,Zhang Y,et al.Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide.Metabolic Engineering,2012,14(4):394-400.
  • 9Ezejt T,Milne C,Price N D,et al.Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms.Applied Microbiology and Biotechnology,2010,85(6):1697-1712.
  • 10Khler K A,Rühl J,Blank L M,et al.Integration of biocatalyst and process engineering for sustainable and efficient n-butanol production.Engineering in Life Sciences,2015,15(1):4-19.

二级参考文献55

  • 1张益棻,陈军,杨蕴刘,焦瑞身.高丁醇比丙酮丁醇梭菌的选育与应用[J].工业微生物,1996,26(4):1-6. 被引量:14
  • 2Zhu L, Dong H, Zhang Y, et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metab Eng, 2011, 13(4) :426-434.
  • 3Keiski V G, Pakkil. J, Ojamo H, et al. Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 2011, 15 ( 2 ) :964-980.
  • 4Ezeji T C, Qureshi N, Blaschek H P. Bioproduction of butanol from biomass: from genes to bioreactors. Curt Opin Biotechnol, 2007, 18(3) :220-227.
  • 5Liu S, Qureshi N. How microbes tolerate ethanol and butanol. N Biotechnol, 2009, 26(3-4) :117-121.
  • 6Ezeji T C, Qureshi N, Blaschek H P. Butanol fermentation research: upstream and downstream manipulations. The Chemical Record, 2004, 4(5) :305-314.
  • 7Ezeji T, Milne C, Price N D, et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol, 2010, 85(6) :1697-1712.
  • 8Jia K, Zhang Y, Li Y. Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sei, 2010, 10(5) :422- 429.
  • 9Alsaker K V, Paredes C, Papoutsakis E T. Metabolite stress and tolerance in the production of biofuels and chemicals: gene- expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng, 2010, 105 (6) : 1131-1147.
  • 10Baek K T, Vegge C S, Skorko-Glonek J, et al. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology. Appl Environ Microbiol, 2011, 77( 1 ) :57-66.

共引文献40

同被引文献23

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部