期刊文献+

一种高分辨率遥感影像分类的特征指数

A New Feature Index for classification of High Resolution Remote Sensing Images
下载PDF
导出
摘要 随着影像分辨率的提高,传统的光谱特征不能有效地描述复杂的高分辨率影像信息,从而影响高分辨率遥感影像的分类。为了弥补传统光谱方法的不足,提出了一种加权对象相关指数(WOCI),并将其应用到基于支持向量机(SVM)的影像分类中。该指数是通过考虑具有相似性光谱的对象来构建的,可全面地描述影像的上下文结构。结果表明与仅考虑光谱特征和像素空间特征进行分类的方法相比,基于WOCI特征的分类结果有更高的精确性,且分类精度提高了7.16%。 With the improvement of image resolution,the traditional spectral characteristics can't effectively describe the information of image with high resolution and affect the classification of high - resolution remote sensing images. In order to make up for the inadequacy of traditional spectral method, it presents a novel spatial feature called weighted object correlative index (WOCI) and applys this index to image classification based on support vector machine (SVM). The index is created by the objects with similar spectrum and can fully describe the context structure of image. The experimental results show that the feature extracted in this paper has higher accuracy than those approaches that only consider spectral features or pixelwise spatial features and the classification accuracy improves 7.16%.
出处 《电子科技》 2016年第11期74-77,共4页 Electronic Science and Technology
基金 重庆市2013博士后科研基金资助项目(RC201336)
关键词 高分辨率遥感影像分类 WOCI 光谱特征 空间特征 classification of very high resolution image weighted object correlative index spectral feature spatial feature
  • 相关文献

参考文献16

  • 1韦玉春.遥感数字图像处理教程[M].北京:科学出版社,2007.
  • 2Qiang P T,Cheng L B.A remote sensing Image classification method based on evidence theory and neuralnetworks [C].Jinan :International Conference on Neural Networks & Signal Processzhg,2004.
  • 3Richards J A,Jia X.Using suitable neighbors to augment the training set in hyperspectral maximum likelihood classification [J].IEEE Geoscience & Remote Sensing Letters,2008,5(4);774-777.
  • 4Zheng J,Cui Z,Liu A,et al.AK - means remote sensing image slassification method based on adaBoost [C].Hangzhou: International Conference on Computing,Networking and Communications (ICNC),IEEE,2008.
  • 5杨耘,隋立春.条件随机场建模的大尺度空间上下文的高分辨率遥感图像分类[J].测绘通报,2014(8):21-24. 被引量:2
  • 6Shackelford A K,Davis CH.A hierarchical fuzzy classification approach for high - resolution multispectral data over ur- ban areas[J].IEEE Transactions on Geoscience & Remote Sensing,2003,41(9):1920-1932.
  • 7Zhang L,Huang X,Huang B,et al.A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery[J].IEEE Transactions on Geoscience & Remote Sensing,2006,44(10):2950-2961.
  • 8Zhu C,Yang S,Zhao Q,et al.Robust semi - supervised Kernel -FCM algorithm incorporating local spatial information for remote sensing image classification [J].Journal of the Indian Society of Remote Sensing,2014,42(1):35-49.
  • 9Huang X,Zhang L.An adaptive mean - shift analysis approach for object extraction and classification from urban hyperspectral imagery[J].IEEE Transactions on Geoscience & Remote Sensing,2008,46(12):4173-4185.
  • 10肖鹏峰,冯学智.高分辨率遥感图像分割与信息提取[M].北京:科学出版社,2012.

二级参考文献28

  • 1田岩,谢玉波,史文中,彭复员,柳健.基于局部方差的多分辨率图像分割方法[J].系统工程与电子技术,2006,28(12):1922-1926. 被引量:6
  • 2张仁锋.空间变异理论及应用[M].北京:科学出版社,2005:2-4
  • 3谭衢霖,刘正军,沈伟.一种面向对象的遥感影像多尺度分割方法[J].北京交通大学学报,2007,31(4):111-114. 被引量:72
  • 4张友静,樊恒通.城市植被尺度鉴别与分类研究[J].地理与地理信息科学,2007,23(6):54-57. 被引量:10
  • 5王波.基于面向对象的高分辨率遥感影像人工信息提取[D].江西:江西理工大学,2008.
  • 6Baatz M, SchapeA. Object - oriented and Multi - scale Im- ageAnalysis in SemanticentWorks [ J ]. proceedings of 2nd International Sympsium on Operationalization of Remote Sensing, 1999,15 ( 3 ) : 87 - 109.
  • 7Woodcock C E, Strahler A H. The Factor of Scale in Re- mote Sensing [ J ]. Remote Sensing of Environment, 1987 (21) :311 -332.
  • 8Atkinson PM, Kelly R E. Scaling -up Point Snow Depth in the U. K for Comparison with SSM/I Imagery [ J]. In- ternational Journal of Remote Sensing, 1994, 18 ( 2 ) : 437 - 443.
  • 9Atkinson PM, Curran P J. Choosing an Appropriate Spa- tial Resolution for Remote Sensing Investigations [ J ]. Photogrammetrie Engineering and Remote Sensing, 1997, 63(12): 1 345-1 351.
  • 10汪东来.面向对象遥感影像分类方法及其应用研究[D].南京:南京林业大学,2008.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部