期刊文献+

基于FSA-ACO混合改进算法的蜗轮蜗杆故障识别 被引量:2

Worm Gear Fault Identification Based on FSA-ACO Mixed Improved Algorithm
下载PDF
导出
摘要 针对蜗轮蜗杆故障诊断问题,提出基于FSA-ACO混合改进算法的蜗轮蜗杆故障识别的研究方法。该方法提出了FSA-ACO混合改进策略,在谋求一个优势互补的基础上,对算法相关参数优化。同时针对该算法与蜗轮蜗杆故障识别结合构建算法模型问题,提出利用近邻函数准则作理论桥梁策略,寻找一种新的基于FSA-ACO混合算法的蜗轮蜗杆故障诊断技术研究方法。以WPA40型号的蜗轮蜗杆为测试对象,验证了该研究方法的可行性和有效性。 A new method for fault identification of worm algorithm -ant colony optimization) algorithm is proposed. The gies to optimize the relevant parameters of the algorithm in gears based on mixed improved FSA-ACO (fish swarm method first proposes mixed improved FSA-ACO strateseeking constructing the algorithm model that combines this algorithm a complementary of advantages. Meanwhile, in with fault identification for worm gears, a strategy guideline based on the neighbor function theory is proposed, looking for a new fault diagnosis technology for worm gears based on mixed FSA-ACO algorithm. Worm gears of WPA40 are taken as the test model to testify the feasibility and effectiveness of the research method.
出处 《电子科技》 2016年第11期133-136,141,共5页 Electronic Science and Technology
关键词 蜗轮蜗杆 鱼群算法 蚁群算法 故障识别 近邻准则 worm gear fish swarm algorithm ant colony optimization fault identification neighbor theory
  • 相关文献

参考文献12

二级参考文献41

共引文献180

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部