摘要
基于k-近邻的协同过滤推荐算法对于邻居数量k的确定过于主观,并且推荐时以k-近邻均值加权推荐不够准确.针对这两个问题,本文首先引入并改进最大最小距离聚类算法,进而设计启发式聚类模型将用户进行不规定类别数的自由聚类划分,目标用户所在类的用户为邻居用户,客观确定邻居数量;然后在推荐时定义类别相似度,针对性地建立目标用户未评分和评分项目的潜在类别关系,改进k-近邻均值加权算法.实验结果表明,该算法提高了推荐准确度(约0.035MAE).
The collaborative recommendation algorithm based on kNN confirms the number of neighbours subjective-ly,and is not accurate enough to predict by kNN mean weighting calculating.To address these two problems,the maximum and minimum distance clustering algorithm was introduced and improved to design the heuristic clustering model,the model divided the users allodially without the determination of the category numbers,the neighbours of the target users were the us-ers who were in the same category with the target users;then the category similarity was defined to build the category rela-tion between the unscore and score items of the target user in prediction,and the kNN mean weighting calculating was ad-vanced based on the category similarity.The experiments show that this algorithm improves the degree of accuracy(reducing about 0. 035 MAE).
出处
《电子学报》
EI
CAS
CSCD
北大核心
2016年第7期1708-1713,共6页
Acta Electronica Sinica
基金
国家973重点基础研究发展计划(No.2012CB315901)
国家863高技术研究发展计划(No.2011AA01A103)
关键词
协同过滤
推荐算法
聚类算法
启发式聚类模型
类别相似度
collaborative
recommendation algorithm
clustering algorithm
heuristic clustering model
category similarity