期刊文献+

一种在线社交网络的自适应观点引导模型及实现 被引量:1

An Adaptive Opinion Guiding Model for Online Social Networks
下载PDF
导出
摘要 在线社交网络已成为信息传播的重要途径,给人们获取信息带来便利的同时,也为不良信息的扩散提供了温床.目前主流的在线社交网络都采用关键字匹配的方式屏蔽不良信息的发布,在阻止信息本身的同时,也屏蔽了与其相关的积极观点的传播.本文提出一种自适应的观点引导模型,实现对在线社交网络用户的观点引导.该模型首先分析网络用户对事件/事物的观点和情感倾向,确定其中观点消极的用户作为引导对象,然后向其推送与之关注点相近且情感相对积极的信息或用户,进行观点引导,同时引入反馈机制,根据引导对象的观点变化动态调整推送内容,以实现长期精确引导.基于该模型设计并实现了观点引导系统,包括引导信息模块、观点标注模块、推荐模块和反馈模块,实现了自动选择群体、自动识别群体情感倾向、自动选择和调整推送内容等功能.实验结果表明,该模型能够实现对在线社交网络用户的观点引导. Online social networks are now recognized as an important platform for the spread of information.While providing convenient exchange for users,it also makes OSNs fertile grounds for the wide spread of misinformation which can lead to undesirable consequences.Most mainstream media outlets use keyword matching as a search method to find misinfor-mation and forbid the presentation in context.However,this method also blocks positive messages related to misinformation. In this paper,we propose an adaptive opinion guiding model to limit the spread of misinformation.Based on user’s opinion and sentiment,the model recommends messages or other users that have relative positive feeling to current user.It also intro-duces the feedback mechanism to achieve a long-term and accurate guiding by adjusting the pushing content dynamically.We also design and finish the guiding system.Experiments show that the model can guide the opinion of the network group ef-fectively.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第7期1714-1720,共7页 Acta Electronica Sinica
基金 国家973重点基础研究发展计划(No.2013CB329605)
关键词 在线社交网络 观点引导 情感分析 内容推荐 online social networks opinion guiding sentiment analysis content-based recommendation
  • 相关文献

参考文献24

  • 1Lorenz J. Continuous opinion dynamics under bounded con- fidence: A survey [J ]. International Journal of Modem Physics C,2007,18(12) :1819 - 1838.
  • 2Splichal S. Public Opinion:Developments and Controver- sies in the Twentieth Century [ M ]. USA: Rowman & Lit- tlefield, 1999.
  • 3Foyle D C. Leading the public to war? The influence of A- merican public opinion on the Bush administration's deci- sion to go to war in Iraq[J]. International Journal of Public Opinion Research,2004,16 (3) : 269 - 294.
  • 4赵文晶,刘军宏.微博舆论引导策略研究[J].中国出版,2011(12):12-15. 被引量:26
  • 5崔鑫,胡勇,丁雪峰,吴越,吴荣军.基于SNA点度的网络舆论导向机理研究[J].四川大学学报(工程科学版),2011,43(1):104-108. 被引量:9
  • 6Su X, Khoshgoftaar T M. A survey of collaborative filtering techniques[ J ]. Advances in Artificial Intelligence, 2009, 2009( 1 ) :421425 _ 1 -421425 _ 19.
  • 7Agarwal D, Chen B C. Regression-based latent factor mod- els[ A]. Proceedings of the 15th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Min- ing [ C ]. USA: ACM,2009,19 - 28.
  • 8谢海涛,孟祥武.适应用户需求进化的个性化信息服务模型[J].电子学报,2011,39(3):643-648. 被引量:27
  • 9Pang B, Lee L. Opinion mining and sentiment analysis [ J ]. Foundations and Trends in Information Retrieval, 2008,2( 1 - 2) : 1 - 135.
  • 10Liu B. Sentiment analysis and subjectivity[ A ]. Handbook of Natural Language Processing [C ]. USA: Taylor and Francis Group,2010.627 - 666.

二级参考文献43

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2胡勇,王陆.网络协作学习中的社会网络分析个案研究[J].开放教育研究,2006,12(5):56-61. 被引量:38
  • 3Bovitz G L. When can a news organization lead public opinion? Ideology versus market forces in decisions to make news [ J ]. Public Choice ,2002,113 : 127 - 155.
  • 4Foyle D C. Leading the public to war? The influence of American public opinion on the Bush administration' s decision to go to war in Iraq[ J]. International Journal of Public Opinion Research ,2004,16 : 269 - 294.
  • 5Deutsch H. Public .opinion's influence on voting system technology[ J]. Computer,2005,38:93-95.
  • 6何德全.引领网络媒体快速有序化发展[C].深圳:重点新闻网站技术建设研讨会,2008.
  • 7Eirinaki M, Vazirgiannis M. Web mining for web personaliza-tion[ J ]. ACM Transactions on Intemet Technology, 2003, 3 (1):1 -27.
  • 8Kim D H, Im ll,Adam N, Afluri V, Bieber M, Yesha Y.A clickstream-based collaborative filtering personalization model: towards a better performance [ A ]. Proceedings of the Interna-tional Workshop on Web Information and Data Management [ C]. Washington:Association for Computing Machinery,2004. 88 -95.
  • 9Mobasher B,DAI H H, LUO T, Nakagawa M. Effective per-sonalizafion based on association rule discovery from web usage data[ A]. Proceedings of the Third International Workshop on Web Information and Data Management ( WIDM ) [ C ]. Atlanta .. Association for Computing Machinery, 2001.9 -15.
  • 10LI Yue-feng,ZHONG Ning. Mining ontology for automatically acquiring web user information needs[ J].IEEE Transactions on Knowledge and Data Engineering. 2006,18(4) :554 -568.

共引文献600

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部