期刊文献+

基于TSCM模型的网络短文本情感挖掘 被引量:12

Mining Sentiment for Web Short Texts Based on TSCM Model
下载PDF
导出
摘要 针对网络短文本情感挖掘问题,提出一种新的基于LDA和互联网短评行为理论的主题情感混合模型TSCM,TSCM模型中的整篇评论中每个句子的主题分布是不同的,TSCM产生词的流程是先确定词的情感极性,再确定词的主题,TSCM考虑了词与词之间的联系.真实数据集Movie与Amazon上的大量实验表明,与代表性算法JST、SLDA、D-PLDA和SAS相比较,TSCM模型能对用户真实情感与讨论主题进行更加有效的分析建模. For sentiment analysis of web short texts,a topic sentiment combining model (TSCM)is proposed based on LDA and web review behavioral theory,which is founded on the assumption that topic distribution of each sentence in a review is unique and different from that of other sentences.Generative process of TSCM is to first determine sentiment orien-tation of each word and then topic of each sentence in a review while taking word relation into consideration.Extensive ex-periments on real-world datasets (Movie and Amazon)show that TSCM significantly outperforms JST,S-LDA,D-PLDA and SAS in terms of the accuracy of sentiment classification and topic detection.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第8期1887-1891,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61370078 No.61363037) 教育部人文社会科学研究青年基金项目(No.12YJCZH074) 福建省教育厅科技项目(No.JA13077)
关键词 情感分析 主题情感混合模型 LDA sentiment analysis topic sentiment mixture latent dirichlet allocation (LDA)
  • 相关文献

参考文献1

二级参考文献13

  • 1邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,1983.
  • 2Hu Minqing, Bing Liu. Mining and summarizing customer re- views[ A] .Proceedings of the 10th ACM SIGKDD Internation- al Conference on Knowledge Discovery and Data Mining[ C]. Seattle: ACM,2004.168 - 177.
  • 3Mukherjee Arjun, Bing Liu. Aspect exlxacfion through semi-su- pervised Modeling[ A]. Proceedings of 50th Annual Meeting of Association for Computational Linguistics [ C ]. Jeju: ACL, 2012. 339 - 348.
  • 4Wenjing Duan, Bin Gu, Andrew B Whinston. Do online reviews matter?. - An empiricalinvestigation of panel data[ J ]. Deci- sion Support Systems,2008,45(4) : 1007 - 1016.
  • 5Magdalini Eirinald, Shamita Pisal, Japinder Singh. Feature-based opinion mining and ranking[ J]. Journal of Computer and Sys- tem Sciences,2012,78 (4) : 1175 - 1184.
  • 6Mohamed M Mostafa. More than words:Social networks' text mining for consumer brand sentiments[ J] .Expert Systems with Applications,2013,40 (10) :4241 - 4251.
  • 7P Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine leaming[ A ]. Pro- ceedings of the Conference on EantYnical Methods in Natural Language Processing[ C ]. Philadelphia: ACL, 2002.79 - 86.
  • 8Peter Tumey. Thumbs up or thumbs down?: Semantic orienta- tion applied tounsupervised classification of reviews [ A ]. Pro- ceedings of the 40th Annual Meeting of Association for Com- putational Linguistics[ C ]. Philadelphia: ACL, 2002.417 - 424.
  • 9Fu Xianghua, Liu Guo, Guo Yanyan, Wang 21aiqiang. Multi- aspect sentiment analysis for Chinese online social reviews basedon topic modeling and HowNetlexicon[ J]. Knowledge- Based Systems, 2013,37( 1 ) : 186 - 195.
  • 10何贵青,陈世浩,田沄,郝重阳.多传感器图像融合效果综合评价研究[J].计算机学报,2008,31(3):486-492. 被引量:17

共引文献16

同被引文献104

引证文献12

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部