期刊文献+

基于最大类间方差法的天空图像云空识别模型 被引量:4

Cloud Identification Model for Sky Images Based on Otsu
下载PDF
导出
摘要 准确的云空辨识对提高光伏发电功率超短期预测精度具有重要意义。首先针对由全天空成像仪采集的一系列天空图像进行预处理,然后提取样本图像的灰度矩阵,最后根据所提取的灰度矩阵建立基于最大类间方差法的天空图像云空识别模型。为验证本文提出的云空辨识模型的有效性,利用云南地区光伏电站中全天空成像仪(Total Sky Imager,TSI)采集的图像进行测试验证,与固定阈值法处理效果对比的结果表明,在复杂天气情况下面对不同分布特性的云团,本文提出的基于最大类间方差法的云空辨识模型更为准确、高效。 Accurate cloud identification is of great significance for increasing the accuracy of the ultra-short-term photovoltaic power forecast. Firstly,a series of sky images were pre-processed collected by Total Sky Imager( TSI). Secondly,the grayscale matrix of the sample image was extracted. Finally,based on the grayscale matrix,the sky image cloud identification model was established by using the Otsu method. In order to verify the effectiveness of the proposed method,we tested the image collected by TSI of PV power station in Yunnan Province and the results were compared with that of fixed threshold method. The results show that the cloud identification model based on Otsu in this paper can identify the sky and cloud more efficiently and accurately under complex weather conditions while facing different cloud clusters.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2016年第5期36-42,共7页 Journal of North China Electric Power University:Natural Science Edition
基金 国家自然科学基金项目(51577067 51277075) 国家重点基础研究发展计划(973计划)项目(2013CB228200) 北京市自然科学基金项目(3162033) 河北省自然科学基金项目(E2015502060) 河北省科技支撑计划重点项目(12213913D) 新能源电力系统国家重点实验室开放课题(LAPS15009 LAPS16007) 中央高校基本科研业务费重点项目(2014ZD29 2015XS108) 云南电网有限责任公司科技项目(K-YN2014-129)
关键词 最大类间方差 云空识别 TSI 灰度图像 Otsu cloud identification TSI gray image
  • 引文网络
  • 相关文献

参考文献12

  • 1叶林,陈政,赵永宁,朱倩雯.基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J].电力系统自动化,2015,39(16):16-22. 被引量:96
  • 2朱想,居蓉蓉,程序,丁宇宇,周海.组合数值天气预报与地基云图的光伏超短期功率预测模型[J].电力系统自动化,2015,39(6):4-10 74. 被引量:60
  • 3CHOW C W, URQUHART B, LAVE M, et al. Intra- hour forecasting with a total sky imager at the UC San Diego solar energy testbed [ J]. Solar Energy, 2011, 85 (11) : 2881 -2893.
  • 4MARQUEZ R, COIMBRA C F M. Intra-hour DNI forecasting based on cloud tracking image analysis [ J]. Solar Energy, 2013, 91 (3): 327-336.
  • 5杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].北京:清大必学出版社,2015.
  • 6LONG C N, SABBURG J M, CALB6 J, et al. Retrie- ving cloud characteristics from ground-based daytime color all sky images [ J]. Journal of Atmospheric & O- ceanic Technology, 2006, 23 (5) : 633 -652.
  • 7KREUTER A, ZANGERL M, SCHWARZMANN M, etal. All-sky imaging: A simple, versatile system for at- mospheric research [ J ]. Change, 2009, 48 (6) : 1091 - 1097.
  • 8张引.基于空间分布的最大类间方差牌照图像二值化算法[J].浙江大学学报(工学版),2001,35(2):219-219. 被引量:39
  • 9ZHU Qijian, JING Liqiu, BI Rongsheng. Exploration and improvement of Otsu threshold segmentation algo- rithm [ C]. Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, 2010:6183 -6188.
  • 10朱想,周海,丁杰,陈志宝,丁宇宇.全天空云图图像复原算法[J].计算机辅助设计与图形学学报,2014,26(6):896-902. 被引量:8

二级参考文献36

  • 1周廷方,汤锋,王进,王章野,彭群生.基于径向基函数的图像修复技术[J].中国图象图形学报(A辑),2004,9(10):1190-1196. 被引量:23
  • 2冈萨雷斯.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007:427.
  • 3Ehnberg J S G, Bollen M H J. Simulation of global solar radiation based on cloud observations [J]. Solar Energy, 2005, 78(2): 157-162.
  • 4Calb6 J, Sabburg J. Feature extraction from whole-sky ground-based images for cloud-type recognition [J]. Journal of Atmospheric and Oceanic Technology, 2008, 25: 3-14.
  • 5Ehnberg J S G, Bollen M H J. Hourly forecast of global irradiation using GMS satellite images[J]. Solar Energy Materials & Solar Cells, 2001, 67: 551-557.
  • 6HammerA, Heinemann D, Lorenz E, et al. Short-term forecasting of solar radiation: a statistical approach using satellite data[J]. Solar Energy, 1999, 67(1-3): 139-150.
  • 7Yona A, Senjyu T, Funabashi T. Application of recurrent neural network to short-term-ahead generating power forecasting for photovoltaic system[C]//IEEE Power Engineering Soeiety General Meeting, 2007.
  • 8Adel.M, Alessandro M P. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy[J]. Solar Energy, 2010, 84(5): 807-821.
  • 9Kassianov E, Long C N, Ovtchinnikov M. Cloud sky cover versus cloud fraction: whole-sky simulations and observations[J]. Journal ofAppliedMeteorology, 2004, 44: 86-98.
  • 10Pfister G, McKenzie R L, Liley J B, et al. Cloud coverage based on all-sky imaging and its impact on surface solar irradiance[J]. Journal 0fApplied Meteorology, 2003, 42: 1421-1434.

共引文献283

同被引文献46

引证文献4

二级引证文献7

;
使用帮助 返回顶部