期刊文献+

EEMD降噪方法在飞机强度试验异响识别中的应用 被引量:1

Application of EEMD Noise Reduction Method to Abnormal Sound Recognition of Aircraft Strength Test
下载PDF
导出
摘要 针对飞机强度试验中异常信号被背景噪声淹没、提取信号特征困难这一问题,提出了结合相关系数的集合经验模态分解方法(EEMD)降噪方法。首先对信号进行EEMD降噪,然后根据相关系数筛选出用于重构信号的IMF分量,提取特征值,最后运用支持向量机进行分类辨识。通过与几种降噪法进行比较,结果表明,结合相关系数的EEMD降噪方法优于其它降噪方法,更适用于充满噪声的全尺寸飞机强度试验中。 Aiming at the problems that the abnormal sound signal is buried in the background noises in aircraft strength test and it is difficult to obtain available abnormal sound signal feature,the noise reduction method based on ensemble empirical mode decomposition( EEMD) and correlation coefficient is proposed. Firstly,abnormal sound signal is decomposed by EEMD and a set of intrinsic mode function components are obtained. Filtering the components according to the correlation coefficient,the selected IMF components are used to reconstruct the signal. Lastly,energy feature extracted from a number of IMFs could serve as input vectors of support vector machine.Practical examples show that the method has obvious advantages compared with other noise reduction methods and can be used in aircraft strength test with the strong background noise.
出处 《工程与试验》 2016年第3期9-13,74,共6页 Engineering and Test
基金 航空基金(20150981006,20140937001)资助
关键词 集合经验模态分解方法 降噪 相关系数 特征提取 支持向量机 ensemble empirical mode decomposition noise reduction correlation coefficient feature extraction support vector machine
  • 相关文献

参考文献7

二级参考文献49

  • 1李合龙.基于EMD和小波分析的建筑结构损伤检测探讨[J].中山大学学报(自然科学版),2005,44(6):20-23. 被引量:4
  • 2石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17
  • 3胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:26
  • 4梅宏斌.滚动轴承振动监测与诊断--理论·方法·系统[M].北京:机械工业出版社,1996.
  • 5Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals [ J ]. Mechanical Systems and Signal Processing, 2000, 14 (5) : 763 - 788.
  • 6Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelet [J]. Mechanical Systems and Signal Processing, 2002,16 (4) : 677 - 694.
  • 7Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proc. R. Soc, 1998,454:903 - 905.
  • 8Dwyer R F. Detection of non-Gaussian signals by frequency domain kurtosis estimation[ C ]. International Conference On Acoustics, Speech, and Signal Processing, Boston, 1983, 607 - 610.
  • 9Antoni J. The spectral kurtosis: A useful tool for characterising non-stationary signals [J]. Mechanical Systems and Signal Processing, 2006,20:282 - 307.
  • 10Antoni J, Randall R B, The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines [ J ]. Mechanical Systems and Signal Processing, 2006, 20 : 308 - 331.

共引文献318

同被引文献6

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部