期刊文献+

Cu欠电位沉积法制备高效Pt/碳布析氢电极

Preparation of High-efficient Pt/Carbon Cloth Hydrogen Evolution Electrode by Cu Underpotential Deposition
下载PDF
导出
摘要 以阳极氧化处理的碳布(ACC)为导电基体,利用Cu的欠电位沉积(UPD)和Cu与Pt金属前驱体之间的置换反应制备了Pt/碳布(Pt/ACC)电极材料,对其微观结构进行了表征并考察了其电催化分解水制氢性能。结果表明,通过控制Cu的沉积电位可以有效地控制Pt的负载量和其在ACC表面的分散状态。随着沉积电位在0.32~0.15 V vs.RHE变化,Pt/ACC电极材料中Pt的负载量呈线性增加;在0.5 mol/L H2SO4溶液中的产氢反应结果表明,随着Pt负载量的增加,析氢起始电位逐渐降低,当沉积电位为0.15 V vs.RHE时,Pt在ACC表面的负载量为588μg/cm2,所得Pt/ACC电极材料起始电位为-0.05 V vs.RHE,且达到10 m A/cm2电流密度所需的过电位仅为56 m V,Tafel斜率为34.2 m V/dec,电极的催化产氢活性与块体Pt箔相近。 Pt/anodized carbon cloth( Pt/ACC) electrodes were prepared via Cu underpotential deposition and replacement reaction between Cu and Pt precursor with ACC as conductive substrates.Their microstructure and electrocatalytic activity for hydrogen production from water were investigated.The results showed that the amount of Pt loading and dispersion of Pt on ACC could be controlled by adjusting Cu deposition potential. When deposition potential changed from 0. 32 to 0. 15 V vs. RHE,the amount of Pt loading on ACC increased linearly. The result of hydrogen evolution in H2SO4 aqueous solution( 0. 5 mol/L) revealed that with the increasing amount of Pt loading,the onset potential for hydrogen evolution decreased gradually. When deposition potential was 0. 15 V vs. RHE,the amount of Pt loading was only 588 μg/cm2 and the obtained Pt/ACC electrode showed similar activity to Pt foil with a onset potential of- 0. 05 V vs. RHE,a overpotential of 56 m V to reach a current density of 10 m A/cm2,and a Tafel slope of 34. 2 m V/dec.
出处 《精细化工》 EI CAS CSCD 北大核心 2016年第11期1227-1231,1294,共6页 Fine Chemicals
基金 国家自然科学基金(21463001 21263001) 宁夏自然科学基金(NZ15102) 北方民族大学校级项目(2014XZZ02 2014XYZ02) 北方民族大学国基前期培育项目(2014QZP04)~~
关键词 Cu 欠电位沉积 碳布 PT 电催化 产氢 copper underpotential deposition carbon cloth platinum electrocatalysis hydrogen evolution
  • 相关文献

参考文献15

  • 1Oh S K,Kim M J,Eom K S,et al. Design of Mg-Ni alloys for fasthydrogen generation from seawater and their application in polymerelectrolyte membrane fuel cells [J].Int J Hydrogen Energy,2016,41( 10) : 5296 - 5303.
  • 2Brierley M,Knowles J P,Preuss M. The reaction product ofhydrogen and electro-refined plutonium observed by in situ electronmicroscopy [J].J Nucl Mater,2016,469: 39 - 42.
  • 3Min S X,Rasul S,Li H F,et al. Electrocatalytic reduction ofcarbon dioxide with a well-defined PN3-Ru pincer complex [J].Chem Plus Chem,2016,81: 166 - 171.
  • 4Zheng Y,Jiao Y,Jaroniec M,et al. Advancing the electrochemistryof the hydrogen-evolution reaction through combining experimentand theory [J].Angew Chem Int Ed,2015,54( 1) : 52 - 65.
  • 5Safizadeh F,Ghali E,Houlachi G. Electrocatalysis developments forhydrogen evolution reaction in alkaline solutions - A review [J].Int J Hydrogen Energy,2015,40( 1) : 256 - 274.
  • 6Zeng M,Li Y G. Recent advances in heterogeneous electrocatalystsfor the hydrogen evolution reaction [J].J Mater Chem A,2015,3( 29) : 14942 - 14962.
  • 7Xie J F,Xie Y. Transition metal nitrides for electrocatalytic energyconversion: opportunities and challenges [J].Chem Eur J,2016,22 ( 11) : 3588 - 3598.
  • 8Greeley J,Jaramillo T F,Bonde J,et al. Computational high-throughput screening of electrocatalytic materials for hydrogenevolution [J].Nat Mater,2006,5 ( 11) : 909 - 913.
  • 9Cómez R,Fem Bndez-Vega A,Feliu J M,et al. Hydrogen evolutionon platinum single crystal surfaces: effects of irreversibly adsorbedbismuth and antimony on hydrogen adsorption and evolution onplatinum ( 100) [J].J Phys Chem,1993,97( 18) : 4769 - 4776.
  • 10Lee B S,Park H Y,Choi I,et al. Polarization characteristics of alow catalyst loading PEM water electrolyzer operating at elevatedtemperature [J].J Power Sources,2016,309: 127 - 134.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部