期刊文献+

严格α-对角占优M-矩阵的逆矩阵无穷范数的界的估计

Estimation of Inverse Matrix of the Infinite Norm of Strict Diagonal Dominant Matrices
下载PDF
导出
摘要 利用非奇异矩阵A与A-B的逆矩阵的关系式,在严格α-对角占优M-矩阵A的基础上,构造了严格对角占优M-矩阵B,并借助矩阵B的逆矩阵的无穷范数的上界,给出了矩阵A的逆矩阵A^(-1)的无穷范数‖A^(-1)‖_∞的单调递减的上界序列。数值例子说明所得结果的可行性和有效性。 By relation between the non singular matrix and of the inverse matrix, strict diagonal dominant matrix is constructed based on the strict diagonal dominant matrix. And with the help of the upper bound of the infinite norm of inverse matrix of , given the decreasing sequence of upper bound infinite norm of inverse matrix , numerical examples show the feasibility and validity of the results.
作者 蒋建新
出处 《榆林学院学报》 2016年第6期39-42,共4页 Journal of Yulin University
关键词 Α-对角占优矩阵 M-矩阵 无穷范数 上界 diagonal dominant matrix matrix infinity norm bound
  • 相关文献

参考文献8

二级参考文献20

  • 1SHIVAKUMAR P N, CHEW K H. A sufficient condition for nonvanishing of determinants [ J ]. Proc Amer Math Soc, 1974,43 (1) :63-66.
  • 2CHENG Guang-hui, HUANG Ting-zhu. An upper bound for ‖A^-1‖∞ of strictly diagonally dominant M - matrices [ J ]. Linear Algebra and its Applications,2007,426 (2/3) :667 - 673.
  • 3陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000.130.
  • 4Varga R S. Matrix iterative analysis [M]. Berlin: Springer, 2000.
  • 5Varah J M. A lower bound for the smallest singular value of a matrix [J]. Linear Algebra and its Applications, 1975, 11: 3-5.
  • 6Varga R S. On Diagonal Dominance Arguments for Bounding IIA-111o [J]. Linear Algebra and its Applications, 1976, 14: 211-217.
  • 7Shivakumar P N, Williams J J, Ye Q, Marinov C.A. On two-sided bounds related to weakly diago- nally dominant M-matrices with application to digital circuit dynamics [J]. SIAM J. Matrix Anal. Appl., 1996, 17: 298-312.
  • 8Cheng G H, Huang T Z. An upper bound for /A-1 of strictly diagonally dominant M-matrices [J]. Linear Algebra Appl., 2007, 426: 667-673.
  • 9Wang P. An upper bound for A-1 o of strictly diagonally dominant M-matrices [J]. Linear Algebra Appl., 2009, 431: 511-517.
  • 10Huang T Z, Zhu Y. Estimation of IIA-111 for weakly chained diagonally dominant 2l-matrices [J]. Linear Algebra Appl., 2010, 432: 670-677.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部