期刊文献+

实尺度喷水推进船拖泵工况数值模拟与分析 被引量:2

Research on the pump towing drag of full scale waterjet ship with CFD
下载PDF
导出
摘要 对于四泵推进的喷水推进船,在巡航工况时中间加速泵通常处于锁轴状态,其拖曳阻力的大小对喷水推进器的选型以及船泵机的最优匹配有着重要影响。然而,拖泵阻力很难通过船模试验的方法获得。为此,该研究在验证均匀和非均匀条件喷水推进器数值模型的准确性基础上,采用数值试验的方法对18节航速下某双泵推进喷水推进船的实尺度"船体+两台喷水推进器"系统带自由液面的流场进行了数值模拟,计算此时喷泵拖曳阻力及其所占船体阻力的百分比。以此喷泵拖曳阻力作为参考,对尺寸与上述喷水推进泵相近的某四泵推进喷水推进船的喷泵进行了选型和设计,并对该船在18节航速下加速泵拖曳阻力的大小进行了计算,进一步验证选型时拖曳阻力取值的合理性。为消除尺度效应的影响采用实尺度模型对"船体+四台喷水推进器"系统带自由液面的非定常流场进行计算,并探索了大尺度条件下船泵系统考虑自由液面和重力影响的非定常计算方法。 Accelerating pump towing drag of the ship propelled by four waterjet pumps at cruising condition has great influence on the process of waterjet selection and optimal match between hull, waterjets and the main engine. However, the pump towing drag is difficult to be obtained from the ship model test, and so far there is little record about the pump towing drag at home and abroad. For this reason, CFD method of waterjet in uniform and non-uniform flow were validated, and CFD method was used for the simulation of the viscous flow of the full scale ship propelled by two waterjets, and the pump towing drag and its percentage on the ship drag could be calculated. Taking this pump towing drag as a reference, the waterjet pumps of the ship propelled by four waterjet were selctected and designed. And then the towing drag of accelerating pumps of the ship could be calculated with CFD simulation, the results indicate that the percentage of the pump towing drag on the ship drag were roughly the same as hypothetical. In order to eliminate the scale effect, the method for calculating the unsteady viscous flow of full scale ‘hull + four waterjets' model with gravity and free surface was researched and introduced briefly.
出处 《船舶力学》 EI CSCD 北大核心 2016年第11期1381-1387,共7页 Journal of Ship Mechanics
基金 国家自然科学基金资助项目(51309229 51307177 51409256)
关键词 船舶 喷水推进器 实尺度 拖泵阻力 数值模拟 非定常 ship waterjet full scale pump towing drag numerical simulation unsteady
  • 相关文献

参考文献3

二级参考文献38

  • 1汤苏林,毛筱菲.喷水推进器进水管内流场模拟[J].武汉理工大学学报(交通科学与工程版),2004,28(6):851-854. 被引量:12
  • 2孙存楼,王永生,丁江明,刘承江.喷水推进器推力的动量计算法[J].武汉理工大学学报(交通科学与工程版),2006,30(6):1098-1101. 被引量:12
  • 3Wang Yongsheng, Ding Jiangmin. Research on the relationship between waterjet power absorption and vessel speed[C]//International Conference on Waterjet Propulsion. London: RINA, 2004.
  • 4Hoyt III J G. Report of the specialist committee on waterjet to 22nd ITI'C[R]. Seoul/Shanghai, 1999.
  • 5Van Terwisga. Report of the specialist committee on validation of waterjet test procedures to 23rd ITrC[R]. Venice, 2002.
  • 6Van Terwisga. Report of the specialist committee on validation of waterjet test procedures to 24th ITYC[R]. Edinburgh, 2005.
  • 7Bulten N, Verbeek R. Off-design behavior of waterjets[C]. Waterjet Propulsion 5, London, 2008.
  • 8Sun Cunlou, Wang Yongsheng. Research on hydrodynamic performance of hybrid propulsion system[C]. Waterjet Propulsion 5, London, UK, 2008.
  • 9孙存楼.喷水推进器流场的数值模拟与性能预报[D].武汉:海军工程大学,2007.
  • 10Bulten N W H. Numerical analysis of a waterjet propulsion system[D]. Technical University of Eindhoven, 2006.

共引文献23

同被引文献17

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部